Loading…

Application of a Longitudinal IRTree Model: Response Style Changes Over Time

Traditional psychometric models focus on studying observed categorical item responses, but these models often oversimplify the respondent cognitive response process, assuming responses are driven by a single substantive trait. A further weakness is that analysis of ordinal responses has been primari...

Full description

Saved in:
Bibliographic Details
Published in:Assessment (Odessa, Fla.) Fla.), 2023-03, Vol.30 (2), p.332-347
Main Authors: Ames, Allison J., Leventhal, Brian C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-6e01f75c52ad52ae8a9facae448c56b1816994df7a93b4facf5b1d8f697bbf7f3
cites cdi_FETCH-LOGICAL-c340t-6e01f75c52ad52ae8a9facae448c56b1816994df7a93b4facf5b1d8f697bbf7f3
container_end_page 347
container_issue 2
container_start_page 332
container_title Assessment (Odessa, Fla.)
container_volume 30
creator Ames, Allison J.
Leventhal, Brian C.
description Traditional psychometric models focus on studying observed categorical item responses, but these models often oversimplify the respondent cognitive response process, assuming responses are driven by a single substantive trait. A further weakness is that analysis of ordinal responses has been primarily limited to a single substantive trait at one time point. This study applies a significant expansion of this modeling framework to account for complex response processes across multiple waves of data collection using the item response tree (IRTree) framework. This study applies a novel model, the longitudinal IRTree, for response processes in longitudinal studies, and investigates whether the response style changes are proportional to changes in the substantive trait of interest. To do so, we present an empirical example using a six-item sexual knowledge scale from the National Longitudinal Study of Adolescent to Adult Health across two waves of data collection. Results show an increase in sexual knowledge from the first wave to the second wave and a decrease in midpoint and extreme response styles. Model validation revealed failure to account for response style can bias estimation of substantive trait growth. The longitudinal IRTree model captures midpoint and extreme response style, as well as the trait of interest, at both waves.
doi_str_mv 10.1177/10731911211042932
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2583443024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10731911211042932</sage_id><sourcerecordid>2583443024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6e01f75c52ad52ae8a9facae448c56b1816994df7a93b4facf5b1d8f697bbf7f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRrFZ_gBfZo5fUnexukvVWih-FSqHWc9gkszUlycZsIvTfu6XVi-BhmIF53vfwEHIDbAIQx_fAYg4KIARgIlQ8PCEXIGUYcJGoU3_7f7AHRuTSuS1jICOVnJMRF1HEfeiCLKZtW5W57kvbUGuopgvbbMp-KMpGV3S-WneI9NUWWD3QFbrWNg7pW7-rkM4-dLNBR5df2NF1WeMVOTO6cnh93GPy_vS4nr0Ei-XzfDZdBDkXrA8iZGBimctQF34w0croXKMQSS6jDBKIlBKFibXimfAvIzMoEhOpOMtMbPiY3B16285-Duj6tC5djlWlG7SDS0OZcCE4C4VH4YDmnXWuQ5O2XVnrbpcCS_cS0z8Sfeb2WD9kNRa_iR9rHpgcAKc3mG7t0HlX7p_Gb11peOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583443024</pqid></control><display><type>article</type><title>Application of a Longitudinal IRTree Model: Response Style Changes Over Time</title><source>Sage Journals Online</source><creator>Ames, Allison J. ; Leventhal, Brian C.</creator><creatorcontrib>Ames, Allison J. ; Leventhal, Brian C.</creatorcontrib><description>Traditional psychometric models focus on studying observed categorical item responses, but these models often oversimplify the respondent cognitive response process, assuming responses are driven by a single substantive trait. A further weakness is that analysis of ordinal responses has been primarily limited to a single substantive trait at one time point. This study applies a significant expansion of this modeling framework to account for complex response processes across multiple waves of data collection using the item response tree (IRTree) framework. This study applies a novel model, the longitudinal IRTree, for response processes in longitudinal studies, and investigates whether the response style changes are proportional to changes in the substantive trait of interest. To do so, we present an empirical example using a six-item sexual knowledge scale from the National Longitudinal Study of Adolescent to Adult Health across two waves of data collection. Results show an increase in sexual knowledge from the first wave to the second wave and a decrease in midpoint and extreme response styles. Model validation revealed failure to account for response style can bias estimation of substantive trait growth. The longitudinal IRTree model captures midpoint and extreme response style, as well as the trait of interest, at both waves.</description><identifier>ISSN: 1073-1911</identifier><identifier>EISSN: 1552-3489</identifier><identifier>DOI: 10.1177/10731911211042932</identifier><identifier>PMID: 34663110</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Adolescent ; Humans ; Longitudinal Studies ; Models, Statistical ; Psychometrics ; Self Report ; Time</subject><ispartof>Assessment (Odessa, Fla.), 2023-03, Vol.30 (2), p.332-347</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6e01f75c52ad52ae8a9facae448c56b1816994df7a93b4facf5b1d8f697bbf7f3</citedby><cites>FETCH-LOGICAL-c340t-6e01f75c52ad52ae8a9facae448c56b1816994df7a93b4facf5b1d8f697bbf7f3</cites><orcidid>0000-0002-1512-9830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34663110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ames, Allison J.</creatorcontrib><creatorcontrib>Leventhal, Brian C.</creatorcontrib><title>Application of a Longitudinal IRTree Model: Response Style Changes Over Time</title><title>Assessment (Odessa, Fla.)</title><addtitle>Assessment</addtitle><description>Traditional psychometric models focus on studying observed categorical item responses, but these models often oversimplify the respondent cognitive response process, assuming responses are driven by a single substantive trait. A further weakness is that analysis of ordinal responses has been primarily limited to a single substantive trait at one time point. This study applies a significant expansion of this modeling framework to account for complex response processes across multiple waves of data collection using the item response tree (IRTree) framework. This study applies a novel model, the longitudinal IRTree, for response processes in longitudinal studies, and investigates whether the response style changes are proportional to changes in the substantive trait of interest. To do so, we present an empirical example using a six-item sexual knowledge scale from the National Longitudinal Study of Adolescent to Adult Health across two waves of data collection. Results show an increase in sexual knowledge from the first wave to the second wave and a decrease in midpoint and extreme response styles. Model validation revealed failure to account for response style can bias estimation of substantive trait growth. The longitudinal IRTree model captures midpoint and extreme response style, as well as the trait of interest, at both waves.</description><subject>Adolescent</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Models, Statistical</subject><subject>Psychometrics</subject><subject>Self Report</subject><subject>Time</subject><issn>1073-1911</issn><issn>1552-3489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRrFZ_gBfZo5fUnexukvVWih-FSqHWc9gkszUlycZsIvTfu6XVi-BhmIF53vfwEHIDbAIQx_fAYg4KIARgIlQ8PCEXIGUYcJGoU3_7f7AHRuTSuS1jICOVnJMRF1HEfeiCLKZtW5W57kvbUGuopgvbbMp-KMpGV3S-WneI9NUWWD3QFbrWNg7pW7-rkM4-dLNBR5df2NF1WeMVOTO6cnh93GPy_vS4nr0Ei-XzfDZdBDkXrA8iZGBimctQF34w0croXKMQSS6jDBKIlBKFibXimfAvIzMoEhOpOMtMbPiY3B16285-Duj6tC5djlWlG7SDS0OZcCE4C4VH4YDmnXWuQ5O2XVnrbpcCS_cS0z8Sfeb2WD9kNRa_iR9rHpgcAKc3mG7t0HlX7p_Gb11peOo</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ames, Allison J.</creator><creator>Leventhal, Brian C.</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid></search><sort><creationdate>20230301</creationdate><title>Application of a Longitudinal IRTree Model: Response Style Changes Over Time</title><author>Ames, Allison J. ; Leventhal, Brian C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6e01f75c52ad52ae8a9facae448c56b1816994df7a93b4facf5b1d8f697bbf7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adolescent</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Models, Statistical</topic><topic>Psychometrics</topic><topic>Self Report</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ames, Allison J.</creatorcontrib><creatorcontrib>Leventhal, Brian C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Assessment (Odessa, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ames, Allison J.</au><au>Leventhal, Brian C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a Longitudinal IRTree Model: Response Style Changes Over Time</atitle><jtitle>Assessment (Odessa, Fla.)</jtitle><addtitle>Assessment</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>30</volume><issue>2</issue><spage>332</spage><epage>347</epage><pages>332-347</pages><issn>1073-1911</issn><eissn>1552-3489</eissn><abstract>Traditional psychometric models focus on studying observed categorical item responses, but these models often oversimplify the respondent cognitive response process, assuming responses are driven by a single substantive trait. A further weakness is that analysis of ordinal responses has been primarily limited to a single substantive trait at one time point. This study applies a significant expansion of this modeling framework to account for complex response processes across multiple waves of data collection using the item response tree (IRTree) framework. This study applies a novel model, the longitudinal IRTree, for response processes in longitudinal studies, and investigates whether the response style changes are proportional to changes in the substantive trait of interest. To do so, we present an empirical example using a six-item sexual knowledge scale from the National Longitudinal Study of Adolescent to Adult Health across two waves of data collection. Results show an increase in sexual knowledge from the first wave to the second wave and a decrease in midpoint and extreme response styles. Model validation revealed failure to account for response style can bias estimation of substantive trait growth. The longitudinal IRTree model captures midpoint and extreme response style, as well as the trait of interest, at both waves.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>34663110</pmid><doi>10.1177/10731911211042932</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1512-9830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1073-1911
ispartof Assessment (Odessa, Fla.), 2023-03, Vol.30 (2), p.332-347
issn 1073-1911
1552-3489
language eng
recordid cdi_proquest_miscellaneous_2583443024
source Sage Journals Online
subjects Adolescent
Humans
Longitudinal Studies
Models, Statistical
Psychometrics
Self Report
Time
title Application of a Longitudinal IRTree Model: Response Style Changes Over Time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20Longitudinal%20IRTree%20Model:%20Response%20Style%20Changes%20Over%20Time&rft.jtitle=Assessment%20(Odessa,%20Fla.)&rft.au=Ames,%20Allison%20J.&rft.date=2023-03-01&rft.volume=30&rft.issue=2&rft.spage=332&rft.epage=347&rft.pages=332-347&rft.issn=1073-1911&rft.eissn=1552-3489&rft_id=info:doi/10.1177/10731911211042932&rft_dat=%3Cproquest_cross%3E2583443024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-6e01f75c52ad52ae8a9facae448c56b1816994df7a93b4facf5b1d8f697bbf7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583443024&rft_id=info:pmid/34663110&rft_sage_id=10.1177_10731911211042932&rfr_iscdi=true