Loading…
Engineering of cis-Element in Saccharomyces cerevisiae for Efficient Accumulation of Value-Added Compound Squalene via Downregulation of the Downstream Metabolic Flux
Transcriptional downregulation is widely used for metabolic flux control. Here, marO, a cis-element of Escherichia coli mar operator, was explored to engineer promoters of Saccharomyces cerevisiae for downregulation. First, the ADH1 promoter (P ADH1 ) and its enhanced variant P UADH1 were engineered...
Saved in:
Published in: | Journal of agricultural and food chemistry 2021-10, Vol.69 (42), p.12474-12484 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transcriptional downregulation is widely used for metabolic flux control. Here, marO, a cis-element of Escherichia coli mar operator, was explored to engineer promoters of Saccharomyces cerevisiae for downregulation. First, the ADH1 promoter (P ADH1 ) and its enhanced variant P UADH1 were engineered by insertion of marO into different sites, which resulted in decrease in both gfp5 transcription and GFP fluorescence intensity to various degrees. Then, marO was applied to engineer the native ERG1 and ERG11 promoters due to their importance for accumulation of value-added intermediates squalene and lanosterol. Elevated squalene content (4.9-fold) or lanosterol content (4.8-fold) and 91 or 28% decrease in ergosterol content resulted from the marO-engineered promoter P ERG1(M5) or P ERG11(M3) , respectively, indicating the validity of the marO-engineered promoters in metabolic flux control. Furthermore, squalene production of 3.53 g/L from cane molasses, a cheap and bulk substrate, suggested the cost-effective and promising potential for squalene production. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.1c04978 |