Loading…
Automatic Cocrystal Detection by Raman Spectral Deconvolution-Based Novelty Analysis
Cocrystals are important molecular adducts that have many advantages as a means of modifying the physicochemical properties of active pharmaceutical ingredients, including taste masking and improved solubility, bioavailability, and stability. As a result, the discovery of new cocrystals is of great...
Saved in:
Published in: | Analytical chemistry (Washington) 2021-11, Vol.93 (43), p.14375-14382 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cocrystals are important molecular adducts that have many advantages as a means of modifying the physicochemical properties of active pharmaceutical ingredients, including taste masking and improved solubility, bioavailability, and stability. As a result, the discovery of new cocrystals is of great interest to commercial drug discovery programs. Time-consuming manual analysis of the large volumes of data that emerge from large-scale cocrystal screening programs of up to 1000s of preparations poses a challenge. Raman spectroscopy has been shown to discriminate between cocrystals and physical mixtures and is easy to automate, allowing rapid screening of large numbers of potential cocrystals, but the spectral features that encode the information are often subtle (e.g., slight changes in peak positions or intensities). We have employed an automated signal processing routine based on a sparse decomposition algorithm to speed up the data processing steps while maintaining the accuracy of a trained spectroscopist. We used our algorithm to screen 31 potential cocrystal preparations and found that through the use of a computationally generated threshold, we could achieve a clear classification of cocrystals and physical mixtures in less than a minute, compared to several hours manually. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c01082 |