Loading…

MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage

Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-11, Vol.13 (43), p.51028-51038
Main Authors: Gao, Pan, Shi, Haiting, Ma, Tianshuai, Liang, Shuaitong, Xia, Yuanhua, Xu, Zhiwei, Wang, Shuo, Min, Chunying, Liu, Liyan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 51038
container_issue 43
container_start_page 51028
container_title ACS applied materials & interfaces
container_volume 13
creator Gao, Pan
Shi, Haiting
Ma, Tianshuai
Liang, Shuaitong
Xia, Yuanhua
Xu, Zhiwei
Wang, Shuo
Min, Chunying
Liu, Liyan
description Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.
doi_str_mv 10.1021/acsami.1c15539
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2585412045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585412045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-bfd103abf6d404bdd6652609dc6f85706d69dab9a1a1e2fee3c2e095e7adc2bd3</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKtXzzmKsG2STdLuUddqC5UeWsHbkk3etinbRJMsXv0P_kN_iSsVD8Obw8zw-BC6pmRECaNjpaM62BHVVIi8OEEDWnCeTZlgp_-e83N0EeOeEJkzIgbIP7-Cg_HGrhieQ4LgYwqdTl2A7AG0DyqBwXMVDC5VqL3DHzbt8DqpugW8sd-fX6teJb73zli3xY0PeOZ2yum-t_bGdods0dfWqd_awiU6a1Qb4ervDtHL42xTzrPl6mlR3i0zRUWesroxlOSqbqThhNfGSCmYJIXRspmKCZFGFkbVhaKKAmsAcs2AFAImymhWm3yIbo67b8G_dxBTdbBRQ9sqB76LFRNTwSkjXPTR22O0B1jtfRdc_1hFSfVLtTpSrf6o5j94U26q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585412045</pqid></control><display><type>article</type><title>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gao, Pan ; Shi, Haiting ; Ma, Tianshuai ; Liang, Shuaitong ; Xia, Yuanhua ; Xu, Zhiwei ; Wang, Shuo ; Min, Chunying ; Liu, Liyan</creator><creatorcontrib>Gao, Pan ; Shi, Haiting ; Ma, Tianshuai ; Liang, Shuaitong ; Xia, Yuanhua ; Xu, Zhiwei ; Wang, Shuo ; Min, Chunying ; Liu, Liyan</creatorcontrib><description>Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c15539</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-11, Vol.13 (43), p.51028-51038</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8067-5344 ; 0000-0002-9662-2044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Ma, Tianshuai</creatorcontrib><creatorcontrib>Liang, Shuaitong</creatorcontrib><creatorcontrib>Xia, Yuanhua</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Min, Chunying</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><title>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKtXzzmKsG2STdLuUddqC5UeWsHbkk3etinbRJMsXv0P_kN_iSsVD8Obw8zw-BC6pmRECaNjpaM62BHVVIi8OEEDWnCeTZlgp_-e83N0EeOeEJkzIgbIP7-Cg_HGrhieQ4LgYwqdTl2A7AG0DyqBwXMVDC5VqL3DHzbt8DqpugW8sd-fX6teJb73zli3xY0PeOZ2yum-t_bGdods0dfWqd_awiU6a1Qb4ervDtHL42xTzrPl6mlR3i0zRUWesroxlOSqbqThhNfGSCmYJIXRspmKCZFGFkbVhaKKAmsAcs2AFAImymhWm3yIbo67b8G_dxBTdbBRQ9sqB76LFRNTwSkjXPTR22O0B1jtfRdc_1hFSfVLtTpSrf6o5j94U26q</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Gao, Pan</creator><creator>Shi, Haiting</creator><creator>Ma, Tianshuai</creator><creator>Liang, Shuaitong</creator><creator>Xia, Yuanhua</creator><creator>Xu, Zhiwei</creator><creator>Wang, Shuo</creator><creator>Min, Chunying</creator><creator>Liu, Liyan</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8067-5344</orcidid><orcidid>https://orcid.org/0000-0002-9662-2044</orcidid></search><sort><creationdate>20211103</creationdate><title>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</title><author>Gao, Pan ; Shi, Haiting ; Ma, Tianshuai ; Liang, Shuaitong ; Xia, Yuanhua ; Xu, Zhiwei ; Wang, Shuo ; Min, Chunying ; Liu, Liyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-bfd103abf6d404bdd6652609dc6f85706d69dab9a1a1e2fee3c2e095e7adc2bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Ma, Tianshuai</creatorcontrib><creatorcontrib>Liang, Shuaitong</creatorcontrib><creatorcontrib>Xia, Yuanhua</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Min, Chunying</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Pan</au><au>Shi, Haiting</au><au>Ma, Tianshuai</au><au>Liang, Shuaitong</au><au>Xia, Yuanhua</au><au>Xu, Zhiwei</au><au>Wang, Shuo</au><au>Min, Chunying</au><au>Liu, Liyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-11-03</date><risdate>2021</risdate><volume>13</volume><issue>43</issue><spage>51028</spage><epage>51038</epage><pages>51028-51038</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c15539</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8067-5344</orcidid><orcidid>https://orcid.org/0000-0002-9662-2044</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-11, Vol.13 (43), p.51028-51038
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2585412045
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene/TiO2%20Heterostructure-Decorated%20Hard%20Carbon%20with%20Stable%20Ti%E2%80%93O%E2%80%93C%20Bonding%20for%20Enhanced%20Sodium-Ion%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gao,%20Pan&rft.date=2021-11-03&rft.volume=13&rft.issue=43&rft.spage=51028&rft.epage=51038&rft.pages=51028-51038&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c15539&rft_dat=%3Cproquest_acs_j%3E2585412045%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-bfd103abf6d404bdd6652609dc6f85706d69dab9a1a1e2fee3c2e095e7adc2bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585412045&rft_id=info:pmid/&rfr_iscdi=true