Loading…
MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage
Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC...
Saved in:
Published in: | ACS applied materials & interfaces 2021-11, Vol.13 (43), p.51028-51038 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 51038 |
container_issue | 43 |
container_start_page | 51028 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Gao, Pan Shi, Haiting Ma, Tianshuai Liang, Shuaitong Xia, Yuanhua Xu, Zhiwei Wang, Shuo Min, Chunying Liu, Liyan |
description | Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs. |
doi_str_mv | 10.1021/acsami.1c15539 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2585412045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585412045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-bfd103abf6d404bdd6652609dc6f85706d69dab9a1a1e2fee3c2e095e7adc2bd3</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKtXzzmKsG2STdLuUddqC5UeWsHbkk3etinbRJMsXv0P_kN_iSsVD8Obw8zw-BC6pmRECaNjpaM62BHVVIi8OEEDWnCeTZlgp_-e83N0EeOeEJkzIgbIP7-Cg_HGrhieQ4LgYwqdTl2A7AG0DyqBwXMVDC5VqL3DHzbt8DqpugW8sd-fX6teJb73zli3xY0PeOZ2yum-t_bGdods0dfWqd_awiU6a1Qb4ervDtHL42xTzrPl6mlR3i0zRUWesroxlOSqbqThhNfGSCmYJIXRspmKCZFGFkbVhaKKAmsAcs2AFAImymhWm3yIbo67b8G_dxBTdbBRQ9sqB76LFRNTwSkjXPTR22O0B1jtfRdc_1hFSfVLtTpSrf6o5j94U26q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585412045</pqid></control><display><type>article</type><title>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gao, Pan ; Shi, Haiting ; Ma, Tianshuai ; Liang, Shuaitong ; Xia, Yuanhua ; Xu, Zhiwei ; Wang, Shuo ; Min, Chunying ; Liu, Liyan</creator><creatorcontrib>Gao, Pan ; Shi, Haiting ; Ma, Tianshuai ; Liang, Shuaitong ; Xia, Yuanhua ; Xu, Zhiwei ; Wang, Shuo ; Min, Chunying ; Liu, Liyan</creatorcontrib><description>Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c15539</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2021-11, Vol.13 (43), p.51028-51038</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8067-5344 ; 0000-0002-9662-2044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Ma, Tianshuai</creatorcontrib><creatorcontrib>Liang, Shuaitong</creatorcontrib><creatorcontrib>Xia, Yuanhua</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Min, Chunying</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><title>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKtXzzmKsG2STdLuUddqC5UeWsHbkk3etinbRJMsXv0P_kN_iSsVD8Obw8zw-BC6pmRECaNjpaM62BHVVIi8OEEDWnCeTZlgp_-e83N0EeOeEJkzIgbIP7-Cg_HGrhieQ4LgYwqdTl2A7AG0DyqBwXMVDC5VqL3DHzbt8DqpugW8sd-fX6teJb73zli3xY0PeOZ2yum-t_bGdods0dfWqd_awiU6a1Qb4ervDtHL42xTzrPl6mlR3i0zRUWesroxlOSqbqThhNfGSCmYJIXRspmKCZFGFkbVhaKKAmsAcs2AFAImymhWm3yIbo67b8G_dxBTdbBRQ9sqB76LFRNTwSkjXPTR22O0B1jtfRdc_1hFSfVLtTpSrf6o5j94U26q</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Gao, Pan</creator><creator>Shi, Haiting</creator><creator>Ma, Tianshuai</creator><creator>Liang, Shuaitong</creator><creator>Xia, Yuanhua</creator><creator>Xu, Zhiwei</creator><creator>Wang, Shuo</creator><creator>Min, Chunying</creator><creator>Liu, Liyan</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8067-5344</orcidid><orcidid>https://orcid.org/0000-0002-9662-2044</orcidid></search><sort><creationdate>20211103</creationdate><title>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</title><author>Gao, Pan ; Shi, Haiting ; Ma, Tianshuai ; Liang, Shuaitong ; Xia, Yuanhua ; Xu, Zhiwei ; Wang, Shuo ; Min, Chunying ; Liu, Liyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-bfd103abf6d404bdd6652609dc6f85706d69dab9a1a1e2fee3c2e095e7adc2bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Ma, Tianshuai</creatorcontrib><creatorcontrib>Liang, Shuaitong</creatorcontrib><creatorcontrib>Xia, Yuanhua</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Min, Chunying</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Pan</au><au>Shi, Haiting</au><au>Ma, Tianshuai</au><au>Liang, Shuaitong</au><au>Xia, Yuanhua</au><au>Xu, Zhiwei</au><au>Wang, Shuo</au><au>Min, Chunying</au><au>Liu, Liyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-11-03</date><risdate>2021</risdate><volume>13</volume><issue>43</issue><spage>51028</spage><epage>51038</epage><pages>51028-51038</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2T x ) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti–O–C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti–O–C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g–1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c15539</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8067-5344</orcidid><orcidid>https://orcid.org/0000-0002-9662-2044</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-11, Vol.13 (43), p.51028-51038 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2585412045 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Energy, Environmental, and Catalysis Applications |
title | MXene/TiO2 Heterostructure-Decorated Hard Carbon with Stable Ti–O–C Bonding for Enhanced Sodium-Ion Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene/TiO2%20Heterostructure-Decorated%20Hard%20Carbon%20with%20Stable%20Ti%E2%80%93O%E2%80%93C%20Bonding%20for%20Enhanced%20Sodium-Ion%20Storage&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gao,%20Pan&rft.date=2021-11-03&rft.volume=13&rft.issue=43&rft.spage=51028&rft.epage=51038&rft.pages=51028-51038&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c15539&rft_dat=%3Cproquest_acs_j%3E2585412045%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-bfd103abf6d404bdd6652609dc6f85706d69dab9a1a1e2fee3c2e095e7adc2bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585412045&rft_id=info:pmid/&rfr_iscdi=true |