Loading…
One-dimensional van der Waals stacked p-type crystal Ta2Pt3Se8 for nanoscale electronics
Recently, ternary transition metal chalcogenides Ta2X3Se8 (X = Pd or Pt) have attracted great interest as a class of emerging one-dimensional (1D) van der Waals (vdW) materials. In particular, Ta2Pd3Se8 has been actively studied owing to its excellent charge transport properties as an n-type semicon...
Saved in:
Published in: | Nanoscale 2021-11, Vol.13 (42), p.17945-17952 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 17952 |
container_issue | 42 |
container_start_page | 17945 |
container_title | Nanoscale |
container_volume | 13 |
creator | Jeong, Byung Joo Choi, Kyung Hwan Jeon, Jiho Yoon, Sang Ok Chung, You Kyoung Sung, Dongchul Chae, Sudong Oh, Seungbae Kim, Bum Jun Lee, Sang Hoon Woo, Chaeheon Kim, Tae Yeong Ahn, Jungyoon Huh, Joonsuk Jae-Hyun, Lee Yu, Hak Ki Jae-Young, Choi |
description | Recently, ternary transition metal chalcogenides Ta2X3Se8 (X = Pd or Pt) have attracted great interest as a class of emerging one-dimensional (1D) van der Waals (vdW) materials. In particular, Ta2Pd3Se8 has been actively studied owing to its excellent charge transport properties as an n-type semiconductor and ultralong ballistic phonon transport properties. Compared to subsequent studies on the Pd-containing material, Ta2Pt3Se8, another member of this class of materials has been considerably less explored despite its promising electrical properties as a p-type semiconductor. Herein, we demonstrate the electrical properties of Ta2Pt3Se8 as a promising channel material for nanoelectronic applications. High-quality bulk Ta2Pt3Se8 single crystals were successfully synthesized by a one-step vapor transport reaction. Scanning Kelvin probe microscopy measurements were used to investigate the surface potential difference and work function of the Ta2Pt3Se8 nanoribbons of various thicknesses. Field-effect transistors fabricated on exfoliated Ta2Pt3Se8 nanoribbons exhibited moderate p-type transport properties with a maximum hole mobility of 5 cm2 V−1 s−1 and an Ion/Ioff ratio of >104. Furthermore, the charge transport mechanism of Ta2Pt3Se8 was analyzed by temperature-dependent transport measurements in the temperature range from 90 to 320 K. To include Ta2Pt3Se8 in a building block for modern 1D electronics, we demonstrate p–n junction characteristics using the electron beam doping method. |
doi_str_mv | 10.1039/d1nr05419h |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2586456653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596174584</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-9c11a344882ba2083b45b1225cc1e451b23fe0d20480df8173ff04482ec99b223</originalsourceid><addsrcrecordid>eNpdj01LAzEYhIMoWD8u_oKAFy-rSd4kTY5S_IJCBSt6K9nsu7g1TdZkK_Tfu6J48DTD8DDMEHLG2SVnYK8aHjNTktu3PTIRTLIKYCr2_7yWh-SolDVj2oKGCXldRKyaboOxdCm6QD9dpA1m-uJcKLQMzr9jQ_tq2PVIfd6NSaBLJx4HeEJD25RpdDEV7wJSDOiHnGLnywk5aMcGPP3VY_J8e7Oc3Vfzxd3D7Hpe9VzqobKecwdSGiNqJ5iBWqqaC6G85ygVrwW0yJpxvmFNa_gU2paNuEBvbS0EHJOLn94-p48tlmG16YrHEFzEtC0roYyWSmsFI3r-D12nbR5Pf1NW86lURsIXW9df5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596174584</pqid></control><display><type>article</type><title>One-dimensional van der Waals stacked p-type crystal Ta2Pt3Se8 for nanoscale electronics</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Jeong, Byung Joo ; Choi, Kyung Hwan ; Jeon, Jiho ; Yoon, Sang Ok ; Chung, You Kyoung ; Sung, Dongchul ; Chae, Sudong ; Oh, Seungbae ; Kim, Bum Jun ; Lee, Sang Hoon ; Woo, Chaeheon ; Kim, Tae Yeong ; Ahn, Jungyoon ; Huh, Joonsuk ; Jae-Hyun, Lee ; Yu, Hak Ki ; Jae-Young, Choi</creator><creatorcontrib>Jeong, Byung Joo ; Choi, Kyung Hwan ; Jeon, Jiho ; Yoon, Sang Ok ; Chung, You Kyoung ; Sung, Dongchul ; Chae, Sudong ; Oh, Seungbae ; Kim, Bum Jun ; Lee, Sang Hoon ; Woo, Chaeheon ; Kim, Tae Yeong ; Ahn, Jungyoon ; Huh, Joonsuk ; Jae-Hyun, Lee ; Yu, Hak Ki ; Jae-Young, Choi</creatorcontrib><description>Recently, ternary transition metal chalcogenides Ta2X3Se8 (X = Pd or Pt) have attracted great interest as a class of emerging one-dimensional (1D) van der Waals (vdW) materials. In particular, Ta2Pd3Se8 has been actively studied owing to its excellent charge transport properties as an n-type semiconductor and ultralong ballistic phonon transport properties. Compared to subsequent studies on the Pd-containing material, Ta2Pt3Se8, another member of this class of materials has been considerably less explored despite its promising electrical properties as a p-type semiconductor. Herein, we demonstrate the electrical properties of Ta2Pt3Se8 as a promising channel material for nanoelectronic applications. High-quality bulk Ta2Pt3Se8 single crystals were successfully synthesized by a one-step vapor transport reaction. Scanning Kelvin probe microscopy measurements were used to investigate the surface potential difference and work function of the Ta2Pt3Se8 nanoribbons of various thicknesses. Field-effect transistors fabricated on exfoliated Ta2Pt3Se8 nanoribbons exhibited moderate p-type transport properties with a maximum hole mobility of 5 cm2 V−1 s−1 and an Ion/Ioff ratio of >104. Furthermore, the charge transport mechanism of Ta2Pt3Se8 was analyzed by temperature-dependent transport measurements in the temperature range from 90 to 320 K. To include Ta2Pt3Se8 in a building block for modern 1D electronics, we demonstrate p–n junction characteristics using the electron beam doping method.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr05419h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transport ; Electrical properties ; Electron beams ; Electronics ; Field effect transistors ; Hole mobility ; N-type semiconductors ; Nanoribbons ; P-n junctions ; P-type semiconductors ; Palladium ; Semiconductor devices ; Single crystals ; Temperature dependence ; Thickness ; Transition metal compounds ; Transport properties ; Work functions</subject><ispartof>Nanoscale, 2021-11, Vol.13 (42), p.17945-17952</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jeong, Byung Joo</creatorcontrib><creatorcontrib>Choi, Kyung Hwan</creatorcontrib><creatorcontrib>Jeon, Jiho</creatorcontrib><creatorcontrib>Yoon, Sang Ok</creatorcontrib><creatorcontrib>Chung, You Kyoung</creatorcontrib><creatorcontrib>Sung, Dongchul</creatorcontrib><creatorcontrib>Chae, Sudong</creatorcontrib><creatorcontrib>Oh, Seungbae</creatorcontrib><creatorcontrib>Kim, Bum Jun</creatorcontrib><creatorcontrib>Lee, Sang Hoon</creatorcontrib><creatorcontrib>Woo, Chaeheon</creatorcontrib><creatorcontrib>Kim, Tae Yeong</creatorcontrib><creatorcontrib>Ahn, Jungyoon</creatorcontrib><creatorcontrib>Huh, Joonsuk</creatorcontrib><creatorcontrib>Jae-Hyun, Lee</creatorcontrib><creatorcontrib>Yu, Hak Ki</creatorcontrib><creatorcontrib>Jae-Young, Choi</creatorcontrib><title>One-dimensional van der Waals stacked p-type crystal Ta2Pt3Se8 for nanoscale electronics</title><title>Nanoscale</title><description>Recently, ternary transition metal chalcogenides Ta2X3Se8 (X = Pd or Pt) have attracted great interest as a class of emerging one-dimensional (1D) van der Waals (vdW) materials. In particular, Ta2Pd3Se8 has been actively studied owing to its excellent charge transport properties as an n-type semiconductor and ultralong ballistic phonon transport properties. Compared to subsequent studies on the Pd-containing material, Ta2Pt3Se8, another member of this class of materials has been considerably less explored despite its promising electrical properties as a p-type semiconductor. Herein, we demonstrate the electrical properties of Ta2Pt3Se8 as a promising channel material for nanoelectronic applications. High-quality bulk Ta2Pt3Se8 single crystals were successfully synthesized by a one-step vapor transport reaction. Scanning Kelvin probe microscopy measurements were used to investigate the surface potential difference and work function of the Ta2Pt3Se8 nanoribbons of various thicknesses. Field-effect transistors fabricated on exfoliated Ta2Pt3Se8 nanoribbons exhibited moderate p-type transport properties with a maximum hole mobility of 5 cm2 V−1 s−1 and an Ion/Ioff ratio of >104. Furthermore, the charge transport mechanism of Ta2Pt3Se8 was analyzed by temperature-dependent transport measurements in the temperature range from 90 to 320 K. To include Ta2Pt3Se8 in a building block for modern 1D electronics, we demonstrate p–n junction characteristics using the electron beam doping method.</description><subject>Charge transport</subject><subject>Electrical properties</subject><subject>Electron beams</subject><subject>Electronics</subject><subject>Field effect transistors</subject><subject>Hole mobility</subject><subject>N-type semiconductors</subject><subject>Nanoribbons</subject><subject>P-n junctions</subject><subject>P-type semiconductors</subject><subject>Palladium</subject><subject>Semiconductor devices</subject><subject>Single crystals</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Transition metal compounds</subject><subject>Transport properties</subject><subject>Work functions</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj01LAzEYhIMoWD8u_oKAFy-rSd4kTY5S_IJCBSt6K9nsu7g1TdZkK_Tfu6J48DTD8DDMEHLG2SVnYK8aHjNTktu3PTIRTLIKYCr2_7yWh-SolDVj2oKGCXldRKyaboOxdCm6QD9dpA1m-uJcKLQMzr9jQ_tq2PVIfd6NSaBLJx4HeEJD25RpdDEV7wJSDOiHnGLnywk5aMcGPP3VY_J8e7Oc3Vfzxd3D7Hpe9VzqobKecwdSGiNqJ5iBWqqaC6G85ygVrwW0yJpxvmFNa_gU2paNuEBvbS0EHJOLn94-p48tlmG16YrHEFzEtC0roYyWSmsFI3r-D12nbR5Pf1NW86lURsIXW9df5A</recordid><startdate>20211104</startdate><enddate>20211104</enddate><creator>Jeong, Byung Joo</creator><creator>Choi, Kyung Hwan</creator><creator>Jeon, Jiho</creator><creator>Yoon, Sang Ok</creator><creator>Chung, You Kyoung</creator><creator>Sung, Dongchul</creator><creator>Chae, Sudong</creator><creator>Oh, Seungbae</creator><creator>Kim, Bum Jun</creator><creator>Lee, Sang Hoon</creator><creator>Woo, Chaeheon</creator><creator>Kim, Tae Yeong</creator><creator>Ahn, Jungyoon</creator><creator>Huh, Joonsuk</creator><creator>Jae-Hyun, Lee</creator><creator>Yu, Hak Ki</creator><creator>Jae-Young, Choi</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20211104</creationdate><title>One-dimensional van der Waals stacked p-type crystal Ta2Pt3Se8 for nanoscale electronics</title><author>Jeong, Byung Joo ; Choi, Kyung Hwan ; Jeon, Jiho ; Yoon, Sang Ok ; Chung, You Kyoung ; Sung, Dongchul ; Chae, Sudong ; Oh, Seungbae ; Kim, Bum Jun ; Lee, Sang Hoon ; Woo, Chaeheon ; Kim, Tae Yeong ; Ahn, Jungyoon ; Huh, Joonsuk ; Jae-Hyun, Lee ; Yu, Hak Ki ; Jae-Young, Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-9c11a344882ba2083b45b1225cc1e451b23fe0d20480df8173ff04482ec99b223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transport</topic><topic>Electrical properties</topic><topic>Electron beams</topic><topic>Electronics</topic><topic>Field effect transistors</topic><topic>Hole mobility</topic><topic>N-type semiconductors</topic><topic>Nanoribbons</topic><topic>P-n junctions</topic><topic>P-type semiconductors</topic><topic>Palladium</topic><topic>Semiconductor devices</topic><topic>Single crystals</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Transition metal compounds</topic><topic>Transport properties</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Byung Joo</creatorcontrib><creatorcontrib>Choi, Kyung Hwan</creatorcontrib><creatorcontrib>Jeon, Jiho</creatorcontrib><creatorcontrib>Yoon, Sang Ok</creatorcontrib><creatorcontrib>Chung, You Kyoung</creatorcontrib><creatorcontrib>Sung, Dongchul</creatorcontrib><creatorcontrib>Chae, Sudong</creatorcontrib><creatorcontrib>Oh, Seungbae</creatorcontrib><creatorcontrib>Kim, Bum Jun</creatorcontrib><creatorcontrib>Lee, Sang Hoon</creatorcontrib><creatorcontrib>Woo, Chaeheon</creatorcontrib><creatorcontrib>Kim, Tae Yeong</creatorcontrib><creatorcontrib>Ahn, Jungyoon</creatorcontrib><creatorcontrib>Huh, Joonsuk</creatorcontrib><creatorcontrib>Jae-Hyun, Lee</creatorcontrib><creatorcontrib>Yu, Hak Ki</creatorcontrib><creatorcontrib>Jae-Young, Choi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Byung Joo</au><au>Choi, Kyung Hwan</au><au>Jeon, Jiho</au><au>Yoon, Sang Ok</au><au>Chung, You Kyoung</au><au>Sung, Dongchul</au><au>Chae, Sudong</au><au>Oh, Seungbae</au><au>Kim, Bum Jun</au><au>Lee, Sang Hoon</au><au>Woo, Chaeheon</au><au>Kim, Tae Yeong</au><au>Ahn, Jungyoon</au><au>Huh, Joonsuk</au><au>Jae-Hyun, Lee</au><au>Yu, Hak Ki</au><au>Jae-Young, Choi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional van der Waals stacked p-type crystal Ta2Pt3Se8 for nanoscale electronics</atitle><jtitle>Nanoscale</jtitle><date>2021-11-04</date><risdate>2021</risdate><volume>13</volume><issue>42</issue><spage>17945</spage><epage>17952</epage><pages>17945-17952</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Recently, ternary transition metal chalcogenides Ta2X3Se8 (X = Pd or Pt) have attracted great interest as a class of emerging one-dimensional (1D) van der Waals (vdW) materials. In particular, Ta2Pd3Se8 has been actively studied owing to its excellent charge transport properties as an n-type semiconductor and ultralong ballistic phonon transport properties. Compared to subsequent studies on the Pd-containing material, Ta2Pt3Se8, another member of this class of materials has been considerably less explored despite its promising electrical properties as a p-type semiconductor. Herein, we demonstrate the electrical properties of Ta2Pt3Se8 as a promising channel material for nanoelectronic applications. High-quality bulk Ta2Pt3Se8 single crystals were successfully synthesized by a one-step vapor transport reaction. Scanning Kelvin probe microscopy measurements were used to investigate the surface potential difference and work function of the Ta2Pt3Se8 nanoribbons of various thicknesses. Field-effect transistors fabricated on exfoliated Ta2Pt3Se8 nanoribbons exhibited moderate p-type transport properties with a maximum hole mobility of 5 cm2 V−1 s−1 and an Ion/Ioff ratio of >104. Furthermore, the charge transport mechanism of Ta2Pt3Se8 was analyzed by temperature-dependent transport measurements in the temperature range from 90 to 320 K. To include Ta2Pt3Se8 in a building block for modern 1D electronics, we demonstrate p–n junction characteristics using the electron beam doping method.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr05419h</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-11, Vol.13 (42), p.17945-17952 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2586456653 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Charge transport Electrical properties Electron beams Electronics Field effect transistors Hole mobility N-type semiconductors Nanoribbons P-n junctions P-type semiconductors Palladium Semiconductor devices Single crystals Temperature dependence Thickness Transition metal compounds Transport properties Work functions |
title | One-dimensional van der Waals stacked p-type crystal Ta2Pt3Se8 for nanoscale electronics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20van%20der%20Waals%20stacked%20p-type%20crystal%20Ta2Pt3Se8%20for%20nanoscale%20electronics&rft.jtitle=Nanoscale&rft.au=Jeong,%20Byung%20Joo&rft.date=2021-11-04&rft.volume=13&rft.issue=42&rft.spage=17945&rft.epage=17952&rft.pages=17945-17952&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr05419h&rft_dat=%3Cproquest%3E2596174584%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p146t-9c11a344882ba2083b45b1225cc1e451b23fe0d20480df8173ff04482ec99b223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596174584&rft_id=info:pmid/&rfr_iscdi=true |