Loading…
Nucleolar histone deacetylases HDT1, HDT2, and HDT3 regulate plant reproductive development
Nucleolus is a membrane-less organelle where ribosomes are assembled, and ribosomal RNAs (rRNAs) transcribed and processed. The assembled ribosomes composed of ribosomal proteins and rRNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametop...
Saved in:
Published in: | Journal of genetics and genomics 2022-01, Vol.49 (1), p.30-39 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nucleolus is a membrane-less organelle where ribosomes are assembled, and ribosomal RNAs (rRNAs) transcribed and processed. The assembled ribosomes composed of ribosomal proteins and rRNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametophytically or embryonically lethality. The amount of rRNAs are under stringent regulation according to demand and partially switched off by epigenetic modifications. However, the molecular mechanism for the selective activation or silencing is still unclear, and the transcriptional coordination of rRNAs and ribosomal proteins is also unknown. Here, we report the critical role of three Arabidopsis nucleolar proteins HDT1, HDT2, and HDT3 in fertility and transcription of rDNAs and rRNA processing-related genes through histone acetylation. This study highlights the important roles of transcriptional repression of ribosome biogenesis-related genes for plant reproductive development. |
---|---|
ISSN: | 1673-8527 |
DOI: | 10.1016/j.jgg.2021.10.002 |