Loading…

Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases

Conspectus The global outbreaks of deadly infectious diseases caused by pathogenic microorganisms have threatened public health worldwide and significantly motivated scientists to satisfy an urgent need for a rapid and accurate detection of pathogens. Traditionally, the culture-based technique is co...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research 2021-11, Vol.54 (22), p.4107-4119
Main Authors: Liu, Wenpeng, Yue, Fei, Lee, Luke P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-3202fc96342e7a7e6a7df0eb252379e33f49860c0ba093a9e8b70cbef8fead163
cites cdi_FETCH-LOGICAL-a348t-3202fc96342e7a7e6a7df0eb252379e33f49860c0ba093a9e8b70cbef8fead163
container_end_page 4119
container_issue 22
container_start_page 4107
container_title Accounts of chemical research
container_volume 54
creator Liu, Wenpeng
Yue, Fei
Lee, Luke P
description Conspectus The global outbreaks of deadly infectious diseases caused by pathogenic microorganisms have threatened public health worldwide and significantly motivated scientists to satisfy an urgent need for a rapid and accurate detection of pathogens. Traditionally, the culture-based technique is considered as the gold standard for pathogen detection, yet it has a long turnaround time due to the overnight culturing and pathogen isolation. Alternatively, nucleic acid amplification tests provide a relatively shorter turnaround time to identify whether pathogens exist in individuals with high sensitivity and high specificity. In most cases, nucleic acid amplification tests undergo three steps: sample preparation, nucleic acid amplification, and signal transduction. Despite the explosive advancement in nucleic acid amplification and signal transduction technologies, the complex and labor-intensive sample preparation steps remain a bottleneck to create a transformative integrated point-of-care (POC) molecular diagnostic device. Researchers have attempted to simplify and integrate the sample preparations for nucleic acid-based molecular diagnostic devices with innovative progress in integration strategies, engineered materials, reagent storages, and fluid actuation. Therefore, understanding the know-how and obtaining truthful knowledge of existing integrated POC molecular diagnostic devices comprising sample preparations, nucleic acid amplification, and signal transduction can generate innovative solutions to achieve personalized precision medicine and improve global health. In this Account, we discuss the challenges of automated sample preparation solutions integrated with nucleic acid amplification and signal transduction for rapid and precise home diagnostics. Blood, nasal swab, saliva, urine, and stool are emphasized as the most commonly used clinical samples for integrated POC molecular diagnostics of infectious diseases. Even though these five types of samples possess relatively correlated biomarkers due to the human body’s circulatory system, each shows unique properties and exclusive advantages for molecular diagnostics in specific situations, which are included in this Account. We examine different integrated POC devices for sample preparation, which includes pathogen isolation and enrichment from the crude sample and nucleic acid purification from isolated pathogens. We present the promising on-chip integration approaches for nucleic acid amplification
doi_str_mv 10.1021/acs.accounts.1c00385
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2587006137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587006137</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-3202fc96342e7a7e6a7df0eb252379e33f49860c0ba093a9e8b70cbef8fead163</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySZlbOdhL1HLo1IrWMDacpxxlSqNi50g8fe4asuS1cxI587Yh5BbClMKjD5oE6baGDd0fZhSA8BFfkbGNGeQZkKKczIGABr7jI3IVQibOLKsKC_JiGeFlFTwMVktuh7XXvdYJ--u6frU2XSmPSYr16IZWu2TeaPXnQt9Y5I5fjcGQ2KdTxadRdM3bgiRCKgDhmtyYXUb8OZYJ-Tz-elj9pou314Ws8dlqnkm-pQzYNbIgmcMS11iocvaAlYsZ7yUyLnNpCjAQKVBci1RVCWYCq2wqGta8Am5P-zdefc1YOjVtgkG21Z3GN-jWC5KgILyMqLZATXeheDRqp1vttr_KApqL1JFkeokUh1Fxtjd8cJQbbH-C53MRQAOwD6-cYPv4of_3_kLBXqDGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587006137</pqid></control><display><type>article</type><title>Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Liu, Wenpeng ; Yue, Fei ; Lee, Luke P</creator><creatorcontrib>Liu, Wenpeng ; Yue, Fei ; Lee, Luke P</creatorcontrib><description>Conspectus The global outbreaks of deadly infectious diseases caused by pathogenic microorganisms have threatened public health worldwide and significantly motivated scientists to satisfy an urgent need for a rapid and accurate detection of pathogens. Traditionally, the culture-based technique is considered as the gold standard for pathogen detection, yet it has a long turnaround time due to the overnight culturing and pathogen isolation. Alternatively, nucleic acid amplification tests provide a relatively shorter turnaround time to identify whether pathogens exist in individuals with high sensitivity and high specificity. In most cases, nucleic acid amplification tests undergo three steps: sample preparation, nucleic acid amplification, and signal transduction. Despite the explosive advancement in nucleic acid amplification and signal transduction technologies, the complex and labor-intensive sample preparation steps remain a bottleneck to create a transformative integrated point-of-care (POC) molecular diagnostic device. Researchers have attempted to simplify and integrate the sample preparations for nucleic acid-based molecular diagnostic devices with innovative progress in integration strategies, engineered materials, reagent storages, and fluid actuation. Therefore, understanding the know-how and obtaining truthful knowledge of existing integrated POC molecular diagnostic devices comprising sample preparations, nucleic acid amplification, and signal transduction can generate innovative solutions to achieve personalized precision medicine and improve global health. In this Account, we discuss the challenges of automated sample preparation solutions integrated with nucleic acid amplification and signal transduction for rapid and precise home diagnostics. Blood, nasal swab, saliva, urine, and stool are emphasized as the most commonly used clinical samples for integrated POC molecular diagnostics of infectious diseases. Even though these five types of samples possess relatively correlated biomarkers due to the human body’s circulatory system, each shows unique properties and exclusive advantages for molecular diagnostics in specific situations, which are included in this Account. We examine different integrated POC devices for sample preparation, which includes pathogen isolation and enrichment from the crude sample and nucleic acid purification from isolated pathogens. We present the promising on-chip integration approaches for nucleic acid amplification. We also investigate the on-chip integration methods for reagent storage, which is crucial to simplify the manual operation for end-users. Finally, we present several integrated POC molecular diagnostic devices for infectious diseases. The integrated sample preparation and nucleic acid amplification approach reviewed here can potentially impact the next generation of POC molecular home diagnostic chips, which will significantly impact public health, emergency medicine, and global biosecurity.</description><identifier>ISSN: 0001-4842</identifier><identifier>ISSN: 1520-4898</identifier><identifier>EISSN: 1520-4898</identifier><identifier>DOI: 10.1021/acs.accounts.1c00385</identifier><identifier>PMID: 34699183</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Communicable Diseases - diagnosis ; Humans ; Molecular Diagnostic Techniques ; Nucleic Acid Amplification Techniques ; Point-of-Care Systems</subject><ispartof>Accounts of chemical research, 2021-11, Vol.54 (22), p.4107-4119</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-3202fc96342e7a7e6a7df0eb252379e33f49860c0ba093a9e8b70cbef8fead163</citedby><cites>FETCH-LOGICAL-a348t-3202fc96342e7a7e6a7df0eb252379e33f49860c0ba093a9e8b70cbef8fead163</cites><orcidid>0000-0002-1436-4054 ; 0000-0002-2932-1321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34699183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wenpeng</creatorcontrib><creatorcontrib>Yue, Fei</creatorcontrib><creatorcontrib>Lee, Luke P</creatorcontrib><title>Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases</title><title>Accounts of chemical research</title><addtitle>Acc. Chem. Res</addtitle><description>Conspectus The global outbreaks of deadly infectious diseases caused by pathogenic microorganisms have threatened public health worldwide and significantly motivated scientists to satisfy an urgent need for a rapid and accurate detection of pathogens. Traditionally, the culture-based technique is considered as the gold standard for pathogen detection, yet it has a long turnaround time due to the overnight culturing and pathogen isolation. Alternatively, nucleic acid amplification tests provide a relatively shorter turnaround time to identify whether pathogens exist in individuals with high sensitivity and high specificity. In most cases, nucleic acid amplification tests undergo three steps: sample preparation, nucleic acid amplification, and signal transduction. Despite the explosive advancement in nucleic acid amplification and signal transduction technologies, the complex and labor-intensive sample preparation steps remain a bottleneck to create a transformative integrated point-of-care (POC) molecular diagnostic device. Researchers have attempted to simplify and integrate the sample preparations for nucleic acid-based molecular diagnostic devices with innovative progress in integration strategies, engineered materials, reagent storages, and fluid actuation. Therefore, understanding the know-how and obtaining truthful knowledge of existing integrated POC molecular diagnostic devices comprising sample preparations, nucleic acid amplification, and signal transduction can generate innovative solutions to achieve personalized precision medicine and improve global health. In this Account, we discuss the challenges of automated sample preparation solutions integrated with nucleic acid amplification and signal transduction for rapid and precise home diagnostics. Blood, nasal swab, saliva, urine, and stool are emphasized as the most commonly used clinical samples for integrated POC molecular diagnostics of infectious diseases. Even though these five types of samples possess relatively correlated biomarkers due to the human body’s circulatory system, each shows unique properties and exclusive advantages for molecular diagnostics in specific situations, which are included in this Account. We examine different integrated POC devices for sample preparation, which includes pathogen isolation and enrichment from the crude sample and nucleic acid purification from isolated pathogens. We present the promising on-chip integration approaches for nucleic acid amplification. We also investigate the on-chip integration methods for reagent storage, which is crucial to simplify the manual operation for end-users. Finally, we present several integrated POC molecular diagnostic devices for infectious diseases. The integrated sample preparation and nucleic acid amplification approach reviewed here can potentially impact the next generation of POC molecular home diagnostic chips, which will significantly impact public health, emergency medicine, and global biosecurity.</description><subject>Communicable Diseases - diagnosis</subject><subject>Humans</subject><subject>Molecular Diagnostic Techniques</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Point-of-Care Systems</subject><issn>0001-4842</issn><issn>1520-4898</issn><issn>1520-4898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySZlbOdhL1HLo1IrWMDacpxxlSqNi50g8fe4asuS1cxI587Yh5BbClMKjD5oE6baGDd0fZhSA8BFfkbGNGeQZkKKczIGABr7jI3IVQibOLKsKC_JiGeFlFTwMVktuh7XXvdYJ--u6frU2XSmPSYr16IZWu2TeaPXnQt9Y5I5fjcGQ2KdTxadRdM3bgiRCKgDhmtyYXUb8OZYJ-Tz-elj9pou314Ws8dlqnkm-pQzYNbIgmcMS11iocvaAlYsZ7yUyLnNpCjAQKVBci1RVCWYCq2wqGta8Am5P-zdefc1YOjVtgkG21Z3GN-jWC5KgILyMqLZATXeheDRqp1vttr_KApqL1JFkeokUh1Fxtjd8cJQbbH-C53MRQAOwD6-cYPv4of_3_kLBXqDGg</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Liu, Wenpeng</creator><creator>Yue, Fei</creator><creator>Lee, Luke P</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1436-4054</orcidid><orcidid>https://orcid.org/0000-0002-2932-1321</orcidid></search><sort><creationdate>20211116</creationdate><title>Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases</title><author>Liu, Wenpeng ; Yue, Fei ; Lee, Luke P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-3202fc96342e7a7e6a7df0eb252379e33f49860c0ba093a9e8b70cbef8fead163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Communicable Diseases - diagnosis</topic><topic>Humans</topic><topic>Molecular Diagnostic Techniques</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Point-of-Care Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenpeng</creatorcontrib><creatorcontrib>Yue, Fei</creatorcontrib><creatorcontrib>Lee, Luke P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Accounts of chemical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenpeng</au><au>Yue, Fei</au><au>Lee, Luke P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases</atitle><jtitle>Accounts of chemical research</jtitle><addtitle>Acc. Chem. Res</addtitle><date>2021-11-16</date><risdate>2021</risdate><volume>54</volume><issue>22</issue><spage>4107</spage><epage>4119</epage><pages>4107-4119</pages><issn>0001-4842</issn><issn>1520-4898</issn><eissn>1520-4898</eissn><abstract>Conspectus The global outbreaks of deadly infectious diseases caused by pathogenic microorganisms have threatened public health worldwide and significantly motivated scientists to satisfy an urgent need for a rapid and accurate detection of pathogens. Traditionally, the culture-based technique is considered as the gold standard for pathogen detection, yet it has a long turnaround time due to the overnight culturing and pathogen isolation. Alternatively, nucleic acid amplification tests provide a relatively shorter turnaround time to identify whether pathogens exist in individuals with high sensitivity and high specificity. In most cases, nucleic acid amplification tests undergo three steps: sample preparation, nucleic acid amplification, and signal transduction. Despite the explosive advancement in nucleic acid amplification and signal transduction technologies, the complex and labor-intensive sample preparation steps remain a bottleneck to create a transformative integrated point-of-care (POC) molecular diagnostic device. Researchers have attempted to simplify and integrate the sample preparations for nucleic acid-based molecular diagnostic devices with innovative progress in integration strategies, engineered materials, reagent storages, and fluid actuation. Therefore, understanding the know-how and obtaining truthful knowledge of existing integrated POC molecular diagnostic devices comprising sample preparations, nucleic acid amplification, and signal transduction can generate innovative solutions to achieve personalized precision medicine and improve global health. In this Account, we discuss the challenges of automated sample preparation solutions integrated with nucleic acid amplification and signal transduction for rapid and precise home diagnostics. Blood, nasal swab, saliva, urine, and stool are emphasized as the most commonly used clinical samples for integrated POC molecular diagnostics of infectious diseases. Even though these five types of samples possess relatively correlated biomarkers due to the human body’s circulatory system, each shows unique properties and exclusive advantages for molecular diagnostics in specific situations, which are included in this Account. We examine different integrated POC devices for sample preparation, which includes pathogen isolation and enrichment from the crude sample and nucleic acid purification from isolated pathogens. We present the promising on-chip integration approaches for nucleic acid amplification. We also investigate the on-chip integration methods for reagent storage, which is crucial to simplify the manual operation for end-users. Finally, we present several integrated POC molecular diagnostic devices for infectious diseases. The integrated sample preparation and nucleic acid amplification approach reviewed here can potentially impact the next generation of POC molecular home diagnostic chips, which will significantly impact public health, emergency medicine, and global biosecurity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34699183</pmid><doi>10.1021/acs.accounts.1c00385</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1436-4054</orcidid><orcidid>https://orcid.org/0000-0002-2932-1321</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-4842
ispartof Accounts of chemical research, 2021-11, Vol.54 (22), p.4107-4119
issn 0001-4842
1520-4898
1520-4898
language eng
recordid cdi_proquest_miscellaneous_2587006137
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Communicable Diseases - diagnosis
Humans
Molecular Diagnostic Techniques
Nucleic Acid Amplification Techniques
Point-of-Care Systems
title Integrated Point-of-Care Molecular Diagnostic Devices for Infectious Diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Point-of-Care%20Molecular%20Diagnostic%20Devices%20for%20Infectious%20Diseases&rft.jtitle=Accounts%20of%20chemical%20research&rft.au=Liu,%20Wenpeng&rft.date=2021-11-16&rft.volume=54&rft.issue=22&rft.spage=4107&rft.epage=4119&rft.pages=4107-4119&rft.issn=0001-4842&rft.eissn=1520-4898&rft_id=info:doi/10.1021/acs.accounts.1c00385&rft_dat=%3Cproquest_cross%3E2587006137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-3202fc96342e7a7e6a7df0eb252379e33f49860c0ba093a9e8b70cbef8fead163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2587006137&rft_id=info:pmid/34699183&rfr_iscdi=true