Loading…

Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase

To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2021-11, Vol.125 (44), p.12135-12146
Main Authors: Walden, Kathryn, Martin, Madison E, LaBee, Lacey, Provorse Long, Makenzie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33
cites cdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33
container_end_page 12146
container_issue 44
container_start_page 12135
container_title The journal of physical chemistry. B
container_volume 125
creator Walden, Kathryn
Martin, Madison E
LaBee, Lacey
Provorse Long, Makenzie
description To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.
doi_str_mv 10.1021/acs.jpcb.1c05757
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2587756407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587756407</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</originalsourceid><addsrcrecordid>eNp1kbtOwzAUhi0EouWyMyGPDE05jmsnGUtVLlK5DN2jE8ehKald7ESir8BT49KCWBiObFnf_1n2T8gFgyGDmF2j8sPlWhVDpkAkIjkgfSZiiMIkh_u9ZCB75MT7JUAs4lQekx4fJSBZJvrk835TOmxrayiakk4W6F51NHdofKUdnVaVVq2ntqLj5g2b2mg6Rdcu6KNusaEP1nh6U5uyNq-0tRTpBF1hPzYNtpqOTfAO6MvC-vXiz8H2prsOzdb21KlG2wK9PiNHFTZen-_XUzK_nc4n99Hs-e5hMp5FyLlso1QKVqhMiBhLjUk5UpxnsgjDoJScV7GMeaZKljKhpYQKBANIeYYF8MCekquddu3se6d9m69qr3TToNG283ks0iQRcgRJQGGHKme9d7rK165eodvkDPJtAXkoIN8WkO8LCJHLvb0rVrr8Dfz8eAAGO-A7ajtnwlv_930B3eGRLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587756407</pqid></control><display><type>article</type><title>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Walden, Kathryn ; Martin, Madison E ; LaBee, Lacey ; Provorse Long, Makenzie</creator><creatorcontrib>Walden, Kathryn ; Martin, Madison E ; LaBee, Lacey ; Provorse Long, Makenzie</creatorcontrib><description>To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c05757</identifier><identifier>PMID: 34706195</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anions ; B: Biophysical and Biochemical Systems and Processes ; Guanine ; Ions ; Metals, Alkaline Earth ; Phosphates</subject><ispartof>The journal of physical chemistry. B, 2021-11, Vol.125 (44), p.12135-12146</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</citedby><cites>FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</cites><orcidid>0000-0003-4034-0248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34706195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walden, Kathryn</creatorcontrib><creatorcontrib>Martin, Madison E</creatorcontrib><creatorcontrib>LaBee, Lacey</creatorcontrib><creatorcontrib>Provorse Long, Makenzie</creatorcontrib><title>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.</description><subject>Anions</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Guanine</subject><subject>Ions</subject><subject>Metals, Alkaline Earth</subject><subject>Phosphates</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kbtOwzAUhi0EouWyMyGPDE05jmsnGUtVLlK5DN2jE8ehKald7ESir8BT49KCWBiObFnf_1n2T8gFgyGDmF2j8sPlWhVDpkAkIjkgfSZiiMIkh_u9ZCB75MT7JUAs4lQekx4fJSBZJvrk835TOmxrayiakk4W6F51NHdofKUdnVaVVq2ntqLj5g2b2mg6Rdcu6KNusaEP1nh6U5uyNq-0tRTpBF1hPzYNtpqOTfAO6MvC-vXiz8H2prsOzdb21KlG2wK9PiNHFTZen-_XUzK_nc4n99Hs-e5hMp5FyLlso1QKVqhMiBhLjUk5UpxnsgjDoJScV7GMeaZKljKhpYQKBANIeYYF8MCekquddu3se6d9m69qr3TToNG283ks0iQRcgRJQGGHKme9d7rK165eodvkDPJtAXkoIN8WkO8LCJHLvb0rVrr8Dfz8eAAGO-A7ajtnwlv_930B3eGRLw</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Walden, Kathryn</creator><creator>Martin, Madison E</creator><creator>LaBee, Lacey</creator><creator>Provorse Long, Makenzie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4034-0248</orcidid></search><sort><creationdate>20211111</creationdate><title>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</title><author>Walden, Kathryn ; Martin, Madison E ; LaBee, Lacey ; Provorse Long, Makenzie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Guanine</topic><topic>Ions</topic><topic>Metals, Alkaline Earth</topic><topic>Phosphates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walden, Kathryn</creatorcontrib><creatorcontrib>Martin, Madison E</creatorcontrib><creatorcontrib>LaBee, Lacey</creatorcontrib><creatorcontrib>Provorse Long, Makenzie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walden, Kathryn</au><au>Martin, Madison E</au><au>LaBee, Lacey</au><au>Provorse Long, Makenzie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-11-11</date><risdate>2021</risdate><volume>125</volume><issue>44</issue><spage>12135</spage><epage>12146</epage><pages>12135-12146</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34706195</pmid><doi>10.1021/acs.jpcb.1c05757</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4034-0248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-11, Vol.125 (44), p.12135-12146
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2587756407
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Anions
B: Biophysical and Biochemical Systems and Processes
Guanine
Ions
Metals, Alkaline Earth
Phosphates
title Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20and%20Charge-Transfer%20Effects%20of%20Alkaline%20Earth%20Metal%20Ions%20Binding%20to%20a%20Carboxylate%20Anion,%20Phosphate%20Anion,%20and%20Guanine%20Nucleobase&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Walden,%20Kathryn&rft.date=2021-11-11&rft.volume=125&rft.issue=44&rft.spage=12135&rft.epage=12146&rft.pages=12135-12146&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c05757&rft_dat=%3Cproquest_cross%3E2587756407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2587756407&rft_id=info:pmid/34706195&rfr_iscdi=true