Loading…
Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase
To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent...
Saved in:
Published in: | The journal of physical chemistry. B 2021-11, Vol.125 (44), p.12135-12146 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33 |
---|---|
cites | cdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33 |
container_end_page | 12146 |
container_issue | 44 |
container_start_page | 12135 |
container_title | The journal of physical chemistry. B |
container_volume | 125 |
creator | Walden, Kathryn Martin, Madison E LaBee, Lacey Provorse Long, Makenzie |
description | To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces. |
doi_str_mv | 10.1021/acs.jpcb.1c05757 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2587756407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587756407</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</originalsourceid><addsrcrecordid>eNp1kbtOwzAUhi0EouWyMyGPDE05jmsnGUtVLlK5DN2jE8ehKald7ESir8BT49KCWBiObFnf_1n2T8gFgyGDmF2j8sPlWhVDpkAkIjkgfSZiiMIkh_u9ZCB75MT7JUAs4lQekx4fJSBZJvrk835TOmxrayiakk4W6F51NHdofKUdnVaVVq2ntqLj5g2b2mg6Rdcu6KNusaEP1nh6U5uyNq-0tRTpBF1hPzYNtpqOTfAO6MvC-vXiz8H2prsOzdb21KlG2wK9PiNHFTZen-_XUzK_nc4n99Hs-e5hMp5FyLlso1QKVqhMiBhLjUk5UpxnsgjDoJScV7GMeaZKljKhpYQKBANIeYYF8MCekquddu3se6d9m69qr3TToNG283ks0iQRcgRJQGGHKme9d7rK165eodvkDPJtAXkoIN8WkO8LCJHLvb0rVrr8Dfz8eAAGO-A7ajtnwlv_930B3eGRLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587756407</pqid></control><display><type>article</type><title>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Walden, Kathryn ; Martin, Madison E ; LaBee, Lacey ; Provorse Long, Makenzie</creator><creatorcontrib>Walden, Kathryn ; Martin, Madison E ; LaBee, Lacey ; Provorse Long, Makenzie</creatorcontrib><description>To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c05757</identifier><identifier>PMID: 34706195</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anions ; B: Biophysical and Biochemical Systems and Processes ; Guanine ; Ions ; Metals, Alkaline Earth ; Phosphates</subject><ispartof>The journal of physical chemistry. B, 2021-11, Vol.125 (44), p.12135-12146</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</citedby><cites>FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</cites><orcidid>0000-0003-4034-0248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34706195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walden, Kathryn</creatorcontrib><creatorcontrib>Martin, Madison E</creatorcontrib><creatorcontrib>LaBee, Lacey</creatorcontrib><creatorcontrib>Provorse Long, Makenzie</creatorcontrib><title>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.</description><subject>Anions</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Guanine</subject><subject>Ions</subject><subject>Metals, Alkaline Earth</subject><subject>Phosphates</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kbtOwzAUhi0EouWyMyGPDE05jmsnGUtVLlK5DN2jE8ehKald7ESir8BT49KCWBiObFnf_1n2T8gFgyGDmF2j8sPlWhVDpkAkIjkgfSZiiMIkh_u9ZCB75MT7JUAs4lQekx4fJSBZJvrk835TOmxrayiakk4W6F51NHdofKUdnVaVVq2ntqLj5g2b2mg6Rdcu6KNusaEP1nh6U5uyNq-0tRTpBF1hPzYNtpqOTfAO6MvC-vXiz8H2prsOzdb21KlG2wK9PiNHFTZen-_XUzK_nc4n99Hs-e5hMp5FyLlso1QKVqhMiBhLjUk5UpxnsgjDoJScV7GMeaZKljKhpYQKBANIeYYF8MCekquddu3se6d9m69qr3TToNG283ks0iQRcgRJQGGHKme9d7rK165eodvkDPJtAXkoIN8WkO8LCJHLvb0rVrr8Dfz8eAAGO-A7ajtnwlv_930B3eGRLw</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Walden, Kathryn</creator><creator>Martin, Madison E</creator><creator>LaBee, Lacey</creator><creator>Provorse Long, Makenzie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4034-0248</orcidid></search><sort><creationdate>20211111</creationdate><title>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</title><author>Walden, Kathryn ; Martin, Madison E ; LaBee, Lacey ; Provorse Long, Makenzie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Guanine</topic><topic>Ions</topic><topic>Metals, Alkaline Earth</topic><topic>Phosphates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walden, Kathryn</creatorcontrib><creatorcontrib>Martin, Madison E</creatorcontrib><creatorcontrib>LaBee, Lacey</creatorcontrib><creatorcontrib>Provorse Long, Makenzie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walden, Kathryn</au><au>Martin, Madison E</au><au>LaBee, Lacey</au><au>Provorse Long, Makenzie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-11-11</date><risdate>2021</risdate><volume>125</volume><issue>44</issue><spage>12135</spage><epage>12146</epage><pages>12135-12146</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>To investigate the ability of alkaline earth metal ions to tune ion-mediated DNA adsorption, hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions bound to a carboxylate anion, phosphate anion, and guanine nucleobase were modeled using density functional theory (DFT) and a combined explicit and continuum solvent model. The large first solvation shell of Ba2+ requires a larger solute cavity defined by a solvent-accessible surface, which is used to model all hydrated ions. Alkaline earth metal ions bind indirectly or directly to each binding site. DFT binding energies decrease with increasing ion size, which is likely due to ion size and hydration structure, rather than quantum effects such as charge transfer. However, charge transfer explains weaker ion binding to guanine compared to phosphate or carboxylate. Overall, carboxylate and phosphate anions are expected to compete equally for hydrated Mg2+, Ca2+, Sr2+, and Ba2+ ions and larger alkaline earth metal ions may induce weaker ion-mediated adsorption. The ion size and hydration structure of alkaline earth metal ions may effectively tune ion-mediated adsorption processes, such as DNA adsorption to functionalized surfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34706195</pmid><doi>10.1021/acs.jpcb.1c05757</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4034-0248</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2021-11, Vol.125 (44), p.12135-12146 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2587756407 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Anions B: Biophysical and Biochemical Systems and Processes Guanine Ions Metals, Alkaline Earth Phosphates |
title | Hydration and Charge-Transfer Effects of Alkaline Earth Metal Ions Binding to a Carboxylate Anion, Phosphate Anion, and Guanine Nucleobase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20and%20Charge-Transfer%20Effects%20of%20Alkaline%20Earth%20Metal%20Ions%20Binding%20to%20a%20Carboxylate%20Anion,%20Phosphate%20Anion,%20and%20Guanine%20Nucleobase&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Walden,%20Kathryn&rft.date=2021-11-11&rft.volume=125&rft.issue=44&rft.spage=12135&rft.epage=12146&rft.pages=12135-12146&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c05757&rft_dat=%3Cproquest_cross%3E2587756407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a336t-8651bc9552adea7d4c3396b39610d633f26239cd1815e660f05100839ab03c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2587756407&rft_id=info:pmid/34706195&rfr_iscdi=true |