Loading…

Structure of supersonic turbulent flow past a swept compression corner

The structure of the shock wave/turbulent boundary-layer interaction generated by a 3D swept compression corner has been investigated through a combined experimental and theoretical research program. The flowfield geometry is defined by the streamwise compression angle alpha and the sweep angle lamb...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 1992-04, Vol.30 (4), p.890-896
Main Authors: Knight, Doyle D, Horstman, C. C, Bogdonoff, Seymour
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structure of the shock wave/turbulent boundary-layer interaction generated by a 3D swept compression corner has been investigated through a combined experimental and theoretical research program. The flowfield geometry is defined by the streamwise compression angle alpha and the sweep angle lambda of the corner. The present study examines two different configurations, namely (alpha, lambda) = (24 deg, 40 deg) and (24 deg, 60 deg) at Mach 3 and Re sigma infinity about 9 x 10 exp 5. The theoretical model is the 3D Reynolds-averaged compressible Navier-Stokes equations with turbulence incorporated using a turbulent eddy viscosity. The calculated flowfields display general agreement with experimental data for surface pressure and good agreement with experimental flowfield profiles of pitot pressure and yaw angle. The principal feature of the flowfield is a large vortical structure approximately aligned with the corner. The entrainment of incoming fluid into the vortical structure is strongly affected by the sweep angle lambda. Viscous (turbulent and molecular) effects appear to be important only in the immediate vicinity of the surface and in an isolated region within the interaction and near the corner.
ISSN:0001-1452
1533-385X
DOI:10.2514/3.11006