Loading…

Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study

The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modeled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and molecular dynamics (MD) simulations to illustrate the interactions eng...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling 2021-11, Vol.27 (11), p.331-331, Article 331
Main Authors: Abdelmalek, Matine, Barhoumi, Ali, Byadi, Said, El idrissi, Mohammed, Salah, Mohammed, Tounsi, Abdessamad, El Ouardi, El Mokhtar, El Alaoui El Abdallaoui, Habib, Zeroual, Abdellah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-4989fad554fac181c0c39403bd39d50110eed9f6822a7549aa45e551cd62823e3
cites cdi_FETCH-LOGICAL-c352t-4989fad554fac181c0c39403bd39d50110eed9f6822a7549aa45e551cd62823e3
container_end_page 331
container_issue 11
container_start_page 331
container_title Journal of molecular modeling
container_volume 27
creator Abdelmalek, Matine
Barhoumi, Ali
Byadi, Said
El idrissi, Mohammed
Salah, Mohammed
Tounsi, Abdessamad
El Ouardi, El Mokhtar
El Alaoui El Abdallaoui, Habib
Zeroual, Abdellah
description The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modeled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and molecular dynamics (MD) simulations to illustrate the interactions engaged. The interaction of the azelaic acid derivatives with iron metal (Fe) was examined by DFT as a typical example of a corrosion prevention mechanism after the optimized molecular structures of these molecules were investigated. Structures, binding energies, Fikui’s charge indicator, electron transfer, and chemical potential are all discussed. The presence of significant binding between the inhibitor and Fe metal is supported by analysis of the resultant complex. Then, in an acidic solution comprising 491 H 2 O, nine chlorine ion Cl − , and nine hydronium ion H 3 O + , molecular dynamics and Monte Carlo (MC) simulation were used to model the adsorption of azelaic acid dihydrazide on the iron Fe (110) surface. In addition, radial distribution function (RDF) and interaction energy (Ei) were evaluated in this work to further our understanding of interactions between azelaic acid dihydrazide and iron surfaces. Furthermore, we discovered that our inhibitors have an excellent ability to slow down the movement of corrosive particles in law temperature and thus to inhibit the metallic substrate against corrosive electrolyte, based on the temperature impact investigation. The result of density functional theory and Monte Carlo and molecular dynamics descriptors obtained were in good agreement with the experimental result.
doi_str_mv 10.1007/s00894-021-04955-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2590088517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587831020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-4989fad554fac181c0c39403bd39d50110eed9f6822a7549aa45e551cd62823e3</originalsourceid><addsrcrecordid>eNp9kT9LBDEQxYMoeOh9AauAjc3qJNncJXZy-A8UG63DmGQ1spucyW5xfnqjJwgWVjPF7z1m3iPkiMEpA1ieFQCl2wY4a6DVUjZ8h8xAt6qRwMUumbEFg4brFvbJvJQ3AGBcLiTnM1JWKedUQoo0xNfwHMavde1zl_KA0XqaOoofvsdgKdrgqAuvG5fxIzh_TpEOqfd26jFTt4k4BFsoRkfvUxw9XWHuEy1hqMC3cRkntzkkex32xc9_5gF5urp8XN00dw_Xt6uLu8YKycem1Up36KRsO7RMMQtW1B_EsxPaSWAMvHe6WyjOcSlbjdhKLyWzbsEVF14ckJOt7zqn98mX0QyhWN_3GH2aiuFS1-SUZMuKHv9B39KUY72uUmqpBAMOleJbytbISvadWecwYN4YBuarCrOtwtQqzHcVhleR2IpKheOLz7_W_6g-Ad0wjGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587831020</pqid></control><display><type>article</type><title>Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study</title><source>Springer Nature</source><creator>Abdelmalek, Matine ; Barhoumi, Ali ; Byadi, Said ; El idrissi, Mohammed ; Salah, Mohammed ; Tounsi, Abdessamad ; El Ouardi, El Mokhtar ; El Alaoui El Abdallaoui, Habib ; Zeroual, Abdellah</creator><creatorcontrib>Abdelmalek, Matine ; Barhoumi, Ali ; Byadi, Said ; El idrissi, Mohammed ; Salah, Mohammed ; Tounsi, Abdessamad ; El Ouardi, El Mokhtar ; El Alaoui El Abdallaoui, Habib ; Zeroual, Abdellah</creatorcontrib><description>The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modeled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and molecular dynamics (MD) simulations to illustrate the interactions engaged. The interaction of the azelaic acid derivatives with iron metal (Fe) was examined by DFT as a typical example of a corrosion prevention mechanism after the optimized molecular structures of these molecules were investigated. Structures, binding energies, Fikui’s charge indicator, electron transfer, and chemical potential are all discussed. The presence of significant binding between the inhibitor and Fe metal is supported by analysis of the resultant complex. Then, in an acidic solution comprising 491 H 2 O, nine chlorine ion Cl − , and nine hydronium ion H 3 O + , molecular dynamics and Monte Carlo (MC) simulation were used to model the adsorption of azelaic acid dihydrazide on the iron Fe (110) surface. In addition, radial distribution function (RDF) and interaction energy (Ei) were evaluated in this work to further our understanding of interactions between azelaic acid dihydrazide and iron surfaces. Furthermore, we discovered that our inhibitors have an excellent ability to slow down the movement of corrosive particles in law temperature and thus to inhibit the metallic substrate against corrosive electrolyte, based on the temperature impact investigation. The result of density functional theory and Monte Carlo and molecular dynamics descriptors obtained were in good agreement with the experimental result.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-021-04955-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Adsorption ; Characterization and Evaluation of Materials ; Charge transfer ; Chemical potential ; Chemistry ; Chemistry and Materials Science ; Chlorine ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Corrosion ; Corrosion inhibitors ; Corrosion mechanisms ; Corrosion prevention ; Density functional theory ; Distribution functions ; Electron transfer ; Hydronium ions ; Low carbon steels ; Molecular dynamics ; Molecular Medicine ; Molecular structure ; Monte Carlo simulation ; Original Paper ; Radial distribution ; Simulation ; Substrate inhibition ; Surface chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of molecular modeling, 2021-11, Vol.27 (11), p.331-331, Article 331</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-4989fad554fac181c0c39403bd39d50110eed9f6822a7549aa45e551cd62823e3</citedby><cites>FETCH-LOGICAL-c352t-4989fad554fac181c0c39403bd39d50110eed9f6822a7549aa45e551cd62823e3</cites><orcidid>0000-0002-4712-361X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abdelmalek, Matine</creatorcontrib><creatorcontrib>Barhoumi, Ali</creatorcontrib><creatorcontrib>Byadi, Said</creatorcontrib><creatorcontrib>El idrissi, Mohammed</creatorcontrib><creatorcontrib>Salah, Mohammed</creatorcontrib><creatorcontrib>Tounsi, Abdessamad</creatorcontrib><creatorcontrib>El Ouardi, El Mokhtar</creatorcontrib><creatorcontrib>El Alaoui El Abdallaoui, Habib</creatorcontrib><creatorcontrib>Zeroual, Abdellah</creatorcontrib><title>Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modeled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and molecular dynamics (MD) simulations to illustrate the interactions engaged. The interaction of the azelaic acid derivatives with iron metal (Fe) was examined by DFT as a typical example of a corrosion prevention mechanism after the optimized molecular structures of these molecules were investigated. Structures, binding energies, Fikui’s charge indicator, electron transfer, and chemical potential are all discussed. The presence of significant binding between the inhibitor and Fe metal is supported by analysis of the resultant complex. Then, in an acidic solution comprising 491 H 2 O, nine chlorine ion Cl − , and nine hydronium ion H 3 O + , molecular dynamics and Monte Carlo (MC) simulation were used to model the adsorption of azelaic acid dihydrazide on the iron Fe (110) surface. In addition, radial distribution function (RDF) and interaction energy (Ei) were evaluated in this work to further our understanding of interactions between azelaic acid dihydrazide and iron surfaces. Furthermore, we discovered that our inhibitors have an excellent ability to slow down the movement of corrosive particles in law temperature and thus to inhibit the metallic substrate against corrosive electrolyte, based on the temperature impact investigation. The result of density functional theory and Monte Carlo and molecular dynamics descriptors obtained were in good agreement with the experimental result.</description><subject>Acids</subject><subject>Adsorption</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemical potential</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chlorine</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Corrosion</subject><subject>Corrosion inhibitors</subject><subject>Corrosion mechanisms</subject><subject>Corrosion prevention</subject><subject>Density functional theory</subject><subject>Distribution functions</subject><subject>Electron transfer</subject><subject>Hydronium ions</subject><subject>Low carbon steels</subject><subject>Molecular dynamics</subject><subject>Molecular Medicine</subject><subject>Molecular structure</subject><subject>Monte Carlo simulation</subject><subject>Original Paper</subject><subject>Radial distribution</subject><subject>Simulation</subject><subject>Substrate inhibition</subject><subject>Surface chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kT9LBDEQxYMoeOh9AauAjc3qJNncJXZy-A8UG63DmGQ1spucyW5xfnqjJwgWVjPF7z1m3iPkiMEpA1ieFQCl2wY4a6DVUjZ8h8xAt6qRwMUumbEFg4brFvbJvJQ3AGBcLiTnM1JWKedUQoo0xNfwHMavde1zl_KA0XqaOoofvsdgKdrgqAuvG5fxIzh_TpEOqfd26jFTt4k4BFsoRkfvUxw9XWHuEy1hqMC3cRkntzkkex32xc9_5gF5urp8XN00dw_Xt6uLu8YKycem1Up36KRsO7RMMQtW1B_EsxPaSWAMvHe6WyjOcSlbjdhKLyWzbsEVF14ckJOt7zqn98mX0QyhWN_3GH2aiuFS1-SUZMuKHv9B39KUY72uUmqpBAMOleJbytbISvadWecwYN4YBuarCrOtwtQqzHcVhleR2IpKheOLz7_W_6g-Ad0wjGw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Abdelmalek, Matine</creator><creator>Barhoumi, Ali</creator><creator>Byadi, Said</creator><creator>El idrissi, Mohammed</creator><creator>Salah, Mohammed</creator><creator>Tounsi, Abdessamad</creator><creator>El Ouardi, El Mokhtar</creator><creator>El Alaoui El Abdallaoui, Habib</creator><creator>Zeroual, Abdellah</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4712-361X</orcidid></search><sort><creationdate>20211101</creationdate><title>Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study</title><author>Abdelmalek, Matine ; Barhoumi, Ali ; Byadi, Said ; El idrissi, Mohammed ; Salah, Mohammed ; Tounsi, Abdessamad ; El Ouardi, El Mokhtar ; El Alaoui El Abdallaoui, Habib ; Zeroual, Abdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-4989fad554fac181c0c39403bd39d50110eed9f6822a7549aa45e551cd62823e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Adsorption</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemical potential</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chlorine</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Corrosion</topic><topic>Corrosion inhibitors</topic><topic>Corrosion mechanisms</topic><topic>Corrosion prevention</topic><topic>Density functional theory</topic><topic>Distribution functions</topic><topic>Electron transfer</topic><topic>Hydronium ions</topic><topic>Low carbon steels</topic><topic>Molecular dynamics</topic><topic>Molecular Medicine</topic><topic>Molecular structure</topic><topic>Monte Carlo simulation</topic><topic>Original Paper</topic><topic>Radial distribution</topic><topic>Simulation</topic><topic>Substrate inhibition</topic><topic>Surface chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelmalek, Matine</creatorcontrib><creatorcontrib>Barhoumi, Ali</creatorcontrib><creatorcontrib>Byadi, Said</creatorcontrib><creatorcontrib>El idrissi, Mohammed</creatorcontrib><creatorcontrib>Salah, Mohammed</creatorcontrib><creatorcontrib>Tounsi, Abdessamad</creatorcontrib><creatorcontrib>El Ouardi, El Mokhtar</creatorcontrib><creatorcontrib>El Alaoui El Abdallaoui, Habib</creatorcontrib><creatorcontrib>Zeroual, Abdellah</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelmalek, Matine</au><au>Barhoumi, Ali</au><au>Byadi, Said</au><au>El idrissi, Mohammed</au><au>Salah, Mohammed</au><au>Tounsi, Abdessamad</au><au>El Ouardi, El Mokhtar</au><au>El Alaoui El Abdallaoui, Habib</au><au>Zeroual, Abdellah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>27</volume><issue>11</issue><spage>331</spage><epage>331</epage><pages>331-331</pages><artnum>331</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>The adsorption of azelaic acid dihydrazide as an environmentally friendly mild steel corrosion inhibitor on the iron surface was modeled in this study. We used density functional theory (DFT) calculations and Monte Carlo (MC) and molecular dynamics (MD) simulations to illustrate the interactions engaged. The interaction of the azelaic acid derivatives with iron metal (Fe) was examined by DFT as a typical example of a corrosion prevention mechanism after the optimized molecular structures of these molecules were investigated. Structures, binding energies, Fikui’s charge indicator, electron transfer, and chemical potential are all discussed. The presence of significant binding between the inhibitor and Fe metal is supported by analysis of the resultant complex. Then, in an acidic solution comprising 491 H 2 O, nine chlorine ion Cl − , and nine hydronium ion H 3 O + , molecular dynamics and Monte Carlo (MC) simulation were used to model the adsorption of azelaic acid dihydrazide on the iron Fe (110) surface. In addition, radial distribution function (RDF) and interaction energy (Ei) were evaluated in this work to further our understanding of interactions between azelaic acid dihydrazide and iron surfaces. Furthermore, we discovered that our inhibitors have an excellent ability to slow down the movement of corrosive particles in law temperature and thus to inhibit the metallic substrate against corrosive electrolyte, based on the temperature impact investigation. The result of density functional theory and Monte Carlo and molecular dynamics descriptors obtained were in good agreement with the experimental result.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00894-021-04955-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4712-361X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2021-11, Vol.27 (11), p.331-331, Article 331
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2590088517
source Springer Nature
subjects Acids
Adsorption
Characterization and Evaluation of Materials
Charge transfer
Chemical potential
Chemistry
Chemistry and Materials Science
Chlorine
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Corrosion
Corrosion inhibitors
Corrosion mechanisms
Corrosion prevention
Density functional theory
Distribution functions
Electron transfer
Hydronium ions
Low carbon steels
Molecular dynamics
Molecular Medicine
Molecular structure
Monte Carlo simulation
Original Paper
Radial distribution
Simulation
Substrate inhibition
Surface chemistry
Theoretical and Computational Chemistry
title Corrosion inhibition performance of azelaic acid dihydrazide: a molecular dynamics and Monte Carlo simulation study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20inhibition%20performance%20of%20azelaic%20acid%20dihydrazide:%20a%20molecular%20dynamics%20and%20Monte%20Carlo%20simulation%20study&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Abdelmalek,%20Matine&rft.date=2021-11-01&rft.volume=27&rft.issue=11&rft.spage=331&rft.epage=331&rft.pages=331-331&rft.artnum=331&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-021-04955-2&rft_dat=%3Cproquest_cross%3E2587831020%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-4989fad554fac181c0c39403bd39d50110eed9f6822a7549aa45e551cd62823e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2587831020&rft_id=info:pmid/&rfr_iscdi=true