Loading…

Automatic defect inspection of thin film transistor-liquid crystal display panels using robust one-dimensional Fourier reconstruction with non-uniform illumination correction

Automatic inspection of micro-defects of thin film transistor-liquid crystal display (TFT-LCD) panels is a critical task in LCD manufacturing. To meet the practical demand of online inspection of a one-dimensional (1D) line image captured by the line scan visual system, we propose a robust 1D Fourie...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2021-10, Vol.92 (10), p.103701-103701
Main Authors: Zhang, Tengda, Dong, Jingtao, Yang, Lei, Liu, Shanlin, Lu, Rongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automatic inspection of micro-defects of thin film transistor-liquid crystal display (TFT-LCD) panels is a critical task in LCD manufacturing. To meet the practical demand of online inspection of a one-dimensional (1D) line image captured by the line scan visual system, we propose a robust 1D Fourier reconstruction method with the capability of automatic determination of the period Δx of the periodic pattern of a spatial domain line image and the neighboring length r of the frequency peaks of the corresponding frequency domain line image. Moreover, to alleviate the difficulty in the discrimination between the defects and the non-uniform illumination background, we present an effective way to correct the non-uniform background using robust locally weighted smoothing combined with polynomial curve fitting. As a proof-of-concept, we built a line scan visual system and tested the captured line images. The results reveal that the proposed method is able to correct the non-uniform illumination background in a proper way that does not cause false alarms in defect inspection but also preserves complete information about the defects in terms of the brightness and darkness as well as the shape, indicating its distinct advantage in defect inspection of TFT-LCD panels.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0060636