Loading…
Velocity Map Imaging Spectroscopy of the Dipole-Bound State of CH2CN–: Implications for the Diffuse Interstellar Bands
Weakly bound anionic systems present a new domain for negative ion spectroscopy. Here we report on a multifaceted study of the CH2CN– dipole-bound state, employing high-resolution photoelectron spectroscopy from 130 different wavelengths, velocity-map imaging at threshold, and laser scanning photode...
Saved in:
Published in: | Journal of the American Chemical Society 2021-11, Vol.143 (44), p.18684-18692 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 18692 |
container_issue | 44 |
container_start_page | 18684 |
container_title | Journal of the American Chemical Society |
container_volume | 143 |
creator | Laws, Benjamin A Levey, Zachariah D Schmidt, Timothy W Gibson, Stephen T |
description | Weakly bound anionic systems present a new domain for negative ion spectroscopy. Here we report on a multifaceted study of the CH2CN– dipole-bound state, employing high-resolution photoelectron spectroscopy from 130 different wavelengths, velocity-map imaging at threshold, and laser scanning photodetachment experiments. This uncovers a wide variety of different vibrational and rotational autodetaching resonances. By examination of both sides of the problem, absorption from the anion to the dipole-bound state and vibrational/rotational autodetachment to the neutral, a complete model of the dipole-bound chemistry is formed. Precise values for the electron affinity EA = 12468.9(1) cm–1, dipole binding energy D BE = 40.2(3) cm–1, and anion inversion splitting ω5 = 115.9(2) cm–1 are obtained. This model is then employed to study possible astronomical implications, revealing good agreement between the K = 1 ← 0 CH2CN– dipole transition and the λ8040 diffuse interstellar band. |
doi_str_mv | 10.1021/jacs.1c08762 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2592310499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592310499</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-3f4fad27cac2017759b0f02eec21f5776390518ce5e8428ad134adfaa45bc40e3</originalsourceid><addsrcrecordid>eNpFkEFOwzAQRS0EEqWw4wBeskmxnThO2NFQaKUCiwLbaOqMS6o0DrEj0R134IachERUYjUazf8zfx4hl5xNOBP8egvaTbhmiYrFERlxKVgguYiPyYgxJgKVxOEpOXNu27eRSPiIfL5hZXXp9_QRGrrYwaasN3TVoPatddo2e2oN9e9I78rGVhhMbVcXdOXB4zDJ5iJ7-vn6vum9TVVq8KWtHTW2PZiM6RzSRe2xdR6rClo6hbpw5-TEQOXw4lDH5PV-9pLNg-XzwyK7XQYgZOqD0EQGCqE0aMG4UjJdM8MEohbcSKXiMGWSJxolJv1HUPAwgsIARHKtI4bhmFz97W1a-9Gh8_mudHoIUqPtXN5fESFnUZr-S3uM-dZ2bd0HyznLB7j5ADc_wA1_AZ7Xbp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592310499</pqid></control><display><type>article</type><title>Velocity Map Imaging Spectroscopy of the Dipole-Bound State of CH2CN–: Implications for the Diffuse Interstellar Bands</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Laws, Benjamin A ; Levey, Zachariah D ; Schmidt, Timothy W ; Gibson, Stephen T</creator><creatorcontrib>Laws, Benjamin A ; Levey, Zachariah D ; Schmidt, Timothy W ; Gibson, Stephen T</creatorcontrib><description>Weakly bound anionic systems present a new domain for negative ion spectroscopy. Here we report on a multifaceted study of the CH2CN– dipole-bound state, employing high-resolution photoelectron spectroscopy from 130 different wavelengths, velocity-map imaging at threshold, and laser scanning photodetachment experiments. This uncovers a wide variety of different vibrational and rotational autodetaching resonances. By examination of both sides of the problem, absorption from the anion to the dipole-bound state and vibrational/rotational autodetachment to the neutral, a complete model of the dipole-bound chemistry is formed. Precise values for the electron affinity EA = 12468.9(1) cm–1, dipole binding energy D BE = 40.2(3) cm–1, and anion inversion splitting ω5 = 115.9(2) cm–1 are obtained. This model is then employed to study possible astronomical implications, revealing good agreement between the K = 1 ← 0 CH2CN– dipole transition and the λ8040 diffuse interstellar band.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c08762</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-11, Vol.143 (44), p.18684-18692</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8086-5482 ; 0000-0001-6691-1438 ; 0000-0002-3767-6114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Laws, Benjamin A</creatorcontrib><creatorcontrib>Levey, Zachariah D</creatorcontrib><creatorcontrib>Schmidt, Timothy W</creatorcontrib><creatorcontrib>Gibson, Stephen T</creatorcontrib><title>Velocity Map Imaging Spectroscopy of the Dipole-Bound State of CH2CN–: Implications for the Diffuse Interstellar Bands</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Weakly bound anionic systems present a new domain for negative ion spectroscopy. Here we report on a multifaceted study of the CH2CN– dipole-bound state, employing high-resolution photoelectron spectroscopy from 130 different wavelengths, velocity-map imaging at threshold, and laser scanning photodetachment experiments. This uncovers a wide variety of different vibrational and rotational autodetaching resonances. By examination of both sides of the problem, absorption from the anion to the dipole-bound state and vibrational/rotational autodetachment to the neutral, a complete model of the dipole-bound chemistry is formed. Precise values for the electron affinity EA = 12468.9(1) cm–1, dipole binding energy D BE = 40.2(3) cm–1, and anion inversion splitting ω5 = 115.9(2) cm–1 are obtained. This model is then employed to study possible astronomical implications, revealing good agreement between the K = 1 ← 0 CH2CN– dipole transition and the λ8040 diffuse interstellar band.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEFOwzAQRS0EEqWw4wBeskmxnThO2NFQaKUCiwLbaOqMS6o0DrEj0R134IachERUYjUazf8zfx4hl5xNOBP8egvaTbhmiYrFERlxKVgguYiPyYgxJgKVxOEpOXNu27eRSPiIfL5hZXXp9_QRGrrYwaasN3TVoPatddo2e2oN9e9I78rGVhhMbVcXdOXB4zDJ5iJ7-vn6vum9TVVq8KWtHTW2PZiM6RzSRe2xdR6rClo6hbpw5-TEQOXw4lDH5PV-9pLNg-XzwyK7XQYgZOqD0EQGCqE0aMG4UjJdM8MEohbcSKXiMGWSJxolJv1HUPAwgsIARHKtI4bhmFz97W1a-9Gh8_mudHoIUqPtXN5fESFnUZr-S3uM-dZ2bd0HyznLB7j5ADc_wA1_AZ7Xbp4</recordid><startdate>20211110</startdate><enddate>20211110</enddate><creator>Laws, Benjamin A</creator><creator>Levey, Zachariah D</creator><creator>Schmidt, Timothy W</creator><creator>Gibson, Stephen T</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8086-5482</orcidid><orcidid>https://orcid.org/0000-0001-6691-1438</orcidid><orcidid>https://orcid.org/0000-0002-3767-6114</orcidid></search><sort><creationdate>20211110</creationdate><title>Velocity Map Imaging Spectroscopy of the Dipole-Bound State of CH2CN–: Implications for the Diffuse Interstellar Bands</title><author>Laws, Benjamin A ; Levey, Zachariah D ; Schmidt, Timothy W ; Gibson, Stephen T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-3f4fad27cac2017759b0f02eec21f5776390518ce5e8428ad134adfaa45bc40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laws, Benjamin A</creatorcontrib><creatorcontrib>Levey, Zachariah D</creatorcontrib><creatorcontrib>Schmidt, Timothy W</creatorcontrib><creatorcontrib>Gibson, Stephen T</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laws, Benjamin A</au><au>Levey, Zachariah D</au><au>Schmidt, Timothy W</au><au>Gibson, Stephen T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity Map Imaging Spectroscopy of the Dipole-Bound State of CH2CN–: Implications for the Diffuse Interstellar Bands</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-11-10</date><risdate>2021</risdate><volume>143</volume><issue>44</issue><spage>18684</spage><epage>18692</epage><pages>18684-18692</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Weakly bound anionic systems present a new domain for negative ion spectroscopy. Here we report on a multifaceted study of the CH2CN– dipole-bound state, employing high-resolution photoelectron spectroscopy from 130 different wavelengths, velocity-map imaging at threshold, and laser scanning photodetachment experiments. This uncovers a wide variety of different vibrational and rotational autodetaching resonances. By examination of both sides of the problem, absorption from the anion to the dipole-bound state and vibrational/rotational autodetachment to the neutral, a complete model of the dipole-bound chemistry is formed. Precise values for the electron affinity EA = 12468.9(1) cm–1, dipole binding energy D BE = 40.2(3) cm–1, and anion inversion splitting ω5 = 115.9(2) cm–1 are obtained. This model is then employed to study possible astronomical implications, revealing good agreement between the K = 1 ← 0 CH2CN– dipole transition and the λ8040 diffuse interstellar band.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.1c08762</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8086-5482</orcidid><orcidid>https://orcid.org/0000-0001-6691-1438</orcidid><orcidid>https://orcid.org/0000-0002-3767-6114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2021-11, Vol.143 (44), p.18684-18692 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2592310499 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Velocity Map Imaging Spectroscopy of the Dipole-Bound State of CH2CN–: Implications for the Diffuse Interstellar Bands |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20Map%20Imaging%20Spectroscopy%20of%20the%20Dipole-Bound%20State%20of%20CH2CN%E2%80%93:%20Implications%20for%20the%20Diffuse%20Interstellar%20Bands&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Laws,%20Benjamin%20A&rft.date=2021-11-10&rft.volume=143&rft.issue=44&rft.spage=18684&rft.epage=18692&rft.pages=18684-18692&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c08762&rft_dat=%3Cproquest_acs_j%3E2592310499%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a259t-3f4fad27cac2017759b0f02eec21f5776390518ce5e8428ad134adfaa45bc40e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2592310499&rft_id=info:pmid/&rfr_iscdi=true |