Loading…
Molecular regulation of polycystic ovary syndrome: altered gene expression levels in mouse models pretreatment and post-treatment
Polycystic ovary syndrome (PCOS) is a complex disorder and genetic factors are believed to play a role. The main aim was to investigate expression levels of genes involved in PI3K/AKT signalling pathway pretreatment and post-treatment. Mouse models of PCOS were generated. Group one included control...
Saved in:
Published in: | Zygote (Cambridge) 2022-06, Vol.30 (3), p.352-357 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polycystic ovary syndrome (PCOS) is a complex disorder and genetic factors are believed to play a role. The main aim was to investigate expression levels of genes involved in PI3K/AKT signalling pathway pretreatment and post-treatment. Mouse models of PCOS were generated. Group one included control mice with no polycystic ovaries (n = 4), Group 2 included a PCOS mouse model (n = 8), Group 3 included PCOS mice treated with clomiphene citrate (n = 7) and Group 4 included PCOS mice treated with clomiphene citrate, metformin and pioglitazone (n = 8). Histochemical analyses were performed. Total RNA was extracted and cDNA was synthesized. Irs, Akt1 and Akt2, mTor and Pdpk1 gene expression levels were evaluated by RT-PCR amplification. In Group 1, cortex and medulla were evaluated as normal; in Group 2, ovarian cortex was composed of immature oocytes and cystic follicles with atretic follicles. In Groups 3 and 4, follicles were in the process of normal follicle differentiation. The expression levels of Akt1 and Pi3k were significantly different (P < 0.0001) between Groups 1 and 2. The significant differences in expression levels of Pi3k and Akt1 were also observed between the Group 1 and both Groups 3 and 4 (P < 0.0001). Furthermore, significant variations of the expression levels of mTor between Groups 1 and 4 were observed. The extrapolation of results of this study may imply that follicular development may be regulated by molecular pathways involving Pi3k, Akt1 and mTor expression. Therefore, genes in the PI3K/AKT pathway may have a direct regulatory role in the development of PCOS. |
---|---|
ISSN: | 0967-1994 1469-8730 |
DOI: | 10.1017/S0967199421000769 |