Loading…
Identification of metabolites in plasma related to different biological activities of Panax ginseng and American ginseng
Rationale Panax ginseng (PG) and American ginseng (AMG) are both medicinal plants of the Panax genus in the Acanthopanax family. Although PG and AMG have similar components of ginsenosides, there are many differences of their bioactivities. In this study, the biochemical mechanisms of different bioa...
Saved in:
Published in: | Rapid communications in mass spectrometry 2022-02, Vol.36 (4), p.e9219-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rationale
Panax ginseng (PG) and American ginseng (AMG) are both medicinal plants of the Panax genus in the Acanthopanax family. Although PG and AMG have similar components of ginsenosides, there are many differences of their bioactivities. In this study, the biochemical mechanisms of different bioactivities of PG and AMG were explored by researching the differential metabolites in plasma after administration of each of PG and AMG.
Methods
In order to explore the material basis of differential bioactivities, two groups of mice were administrated orally with PG and AMG, and the method of metabolomics was used to identify the differential metabolites in plasma. Then network pharmacology was used based on the differential metabolites. Afterward, the metabolite–target–pathway network of PG and AMG was constructed; thus the pathways related to different bioactivities were analyzed.
Results
Through principal component analysis and orthogonal projections to latent structures discriminant analysis, there were 10 differential metabolites identified in the PG group and 8 differential metabolites identified in the AMG group. Based on network pharmacology, the differential metabolites were classified and related to differential bioactivities of PG and AMG. In the PG group, there were 6 metabolites related to aphrodisiac effect and exciting the nervous system, and 5 metabolites associated with raised blood pressure. In the AMG group, 5 metabolites were classified as having the effect of inhibiting the nervous system, and 6 metabolites were related to antihypertensive effect.
Conclusions
This study explored the material basis of the differential biological activities between PG and AMG, which is significant for the research of PG and AMG use and to promote human health. |
---|---|
ISSN: | 0951-4198 1097-0231 |
DOI: | 10.1002/rcm.9219 |