Loading…

A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination

In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration ove...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2021-12, Vol.17 (12), p.7827-7849
Main Authors: Gale, Julian D, LeBlanc, Luc M, Spackman, Peter R, Silvestri, Alessandro, Raiteri, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143
cites cdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143
container_end_page 7849
container_issue 12
container_start_page 7827
container_title Journal of chemical theory and computation
container_volume 17
creator Gale, Julian D
LeBlanc, Luc M
Spackman, Peter R
Silvestri, Alessandro
Raiteri, Paolo
description In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs.
doi_str_mv 10.1021/acs.jctc.1c00832
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594294050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594294050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMyFLLAxN8TOp2aqqKZXKY6CsluM4kqs8ip0g-Pe4LwYkJl9L5_uufQC4xmiEEcH3SvvRWrd6hDVCY0pOQB9zJiIRk_j0d8bjHrjwfo0QpYzQc9CjLKE8iVkfvE_gqrafxnlVwrRx2sDUmjKHRePgk2qNs6r0Q_gahia3Gs7T5yhNH-Ci2pSmMnWrWtvUUNU5nH2pyta7-yU4K0LOXB3OAVils7fpY7R8mS-mk2WkGIrbyDBDMRa5ZkQImmiuBBO8QBgxEovwQ0q5IpxzobLCYIJVko2pSXgRJ5nAjA7A3b5345qPzvhWVtZrU5aqNk3nJeEiVDPEUUBv_6DrpnN1eJ0kMY45QyKsGwC0p7RrvHemkBtnK-W-JUZy61wG53LrXB6ch8jNobjLKpP_Bo6SAzDcA7vocem_fT-6j4ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616540913</pqid></control><display><type>article</type><title>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gale, Julian D ; LeBlanc, Luc M ; Spackman, Peter R ; Silvestri, Alessandro ; Raiteri, Paolo</creator><creatorcontrib>Gale, Julian D ; LeBlanc, Luc M ; Spackman, Peter R ; Silvestri, Alessandro ; Raiteri, Paolo</creatorcontrib><description>In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.1c00832</identifier><identifier>PMID: 34735764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Boundary conditions ; Brillouin zones ; Cartesian coordinates ; Condensed Matter, Interfaces, and Materials ; Coordination numbers ; Covalent bonds ; Damping ; Dispersion ; Numerical integration</subject><ispartof>Journal of chemical theory and computation, 2021-12, Vol.17 (12), p.7827-7849</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 14, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</citedby><cites>FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</cites><orcidid>0000-0003-0692-0505 ; 0000-0003-2944-2737 ; 0000-0001-5560-7676 ; 0000-0002-6532-8571 ; 0000-0001-9587-9457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34735764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gale, Julian D</creatorcontrib><creatorcontrib>LeBlanc, Luc M</creatorcontrib><creatorcontrib>Spackman, Peter R</creatorcontrib><creatorcontrib>Silvestri, Alessandro</creatorcontrib><creatorcontrib>Raiteri, Paolo</creatorcontrib><title>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs.</description><subject>Boundary conditions</subject><subject>Brillouin zones</subject><subject>Cartesian coordinates</subject><subject>Condensed Matter, Interfaces, and Materials</subject><subject>Coordination numbers</subject><subject>Covalent bonds</subject><subject>Damping</subject><subject>Dispersion</subject><subject>Numerical integration</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMyFLLAxN8TOp2aqqKZXKY6CsluM4kqs8ip0g-Pe4LwYkJl9L5_uufQC4xmiEEcH3SvvRWrd6hDVCY0pOQB9zJiIRk_j0d8bjHrjwfo0QpYzQc9CjLKE8iVkfvE_gqrafxnlVwrRx2sDUmjKHRePgk2qNs6r0Q_gahia3Gs7T5yhNH-Ci2pSmMnWrWtvUUNU5nH2pyta7-yU4K0LOXB3OAVils7fpY7R8mS-mk2WkGIrbyDBDMRa5ZkQImmiuBBO8QBgxEovwQ0q5IpxzobLCYIJVko2pSXgRJ5nAjA7A3b5345qPzvhWVtZrU5aqNk3nJeEiVDPEUUBv_6DrpnN1eJ0kMY45QyKsGwC0p7RrvHemkBtnK-W-JUZy61wG53LrXB6ch8jNobjLKpP_Bo6SAzDcA7vocem_fT-6j4ng</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Gale, Julian D</creator><creator>LeBlanc, Luc M</creator><creator>Spackman, Peter R</creator><creator>Silvestri, Alessandro</creator><creator>Raiteri, Paolo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0692-0505</orcidid><orcidid>https://orcid.org/0000-0003-2944-2737</orcidid><orcidid>https://orcid.org/0000-0001-5560-7676</orcidid><orcidid>https://orcid.org/0000-0002-6532-8571</orcidid><orcidid>https://orcid.org/0000-0001-9587-9457</orcidid></search><sort><creationdate>20211214</creationdate><title>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</title><author>Gale, Julian D ; LeBlanc, Luc M ; Spackman, Peter R ; Silvestri, Alessandro ; Raiteri, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Brillouin zones</topic><topic>Cartesian coordinates</topic><topic>Condensed Matter, Interfaces, and Materials</topic><topic>Coordination numbers</topic><topic>Covalent bonds</topic><topic>Damping</topic><topic>Dispersion</topic><topic>Numerical integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gale, Julian D</creatorcontrib><creatorcontrib>LeBlanc, Luc M</creatorcontrib><creatorcontrib>Spackman, Peter R</creatorcontrib><creatorcontrib>Silvestri, Alessandro</creatorcontrib><creatorcontrib>Raiteri, Paolo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gale, Julian D</au><au>LeBlanc, Luc M</au><au>Spackman, Peter R</au><au>Silvestri, Alessandro</au><au>Raiteri, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>17</volume><issue>12</issue><spage>7827</spage><epage>7849</epage><pages>7827-7849</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34735764</pmid><doi>10.1021/acs.jctc.1c00832</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0692-0505</orcidid><orcidid>https://orcid.org/0000-0003-2944-2737</orcidid><orcidid>https://orcid.org/0000-0001-5560-7676</orcidid><orcidid>https://orcid.org/0000-0002-6532-8571</orcidid><orcidid>https://orcid.org/0000-0001-9587-9457</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2021-12, Vol.17 (12), p.7827-7849
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2594294050
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Boundary conditions
Brillouin zones
Cartesian coordinates
Condensed Matter, Interfaces, and Materials
Coordination numbers
Covalent bonds
Damping
Dispersion
Numerical integration
title A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Force%20Field%20for%20Materials,%20Periodic%20GFN-FF:%20Implementation%20and%20Examination&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Gale,%20Julian%20D&rft.date=2021-12-14&rft.volume=17&rft.issue=12&rft.spage=7827&rft.epage=7849&rft.pages=7827-7849&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.1c00832&rft_dat=%3Cproquest_cross%3E2594294050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616540913&rft_id=info:pmid/34735764&rfr_iscdi=true