Loading…
A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination
In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration ove...
Saved in:
Published in: | Journal of chemical theory and computation 2021-12, Vol.17 (12), p.7827-7849 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143 |
---|---|
cites | cdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143 |
container_end_page | 7849 |
container_issue | 12 |
container_start_page | 7827 |
container_title | Journal of chemical theory and computation |
container_volume | 17 |
creator | Gale, Julian D LeBlanc, Luc M Spackman, Peter R Silvestri, Alessandro Raiteri, Paolo |
description | In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs. |
doi_str_mv | 10.1021/acs.jctc.1c00832 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594294050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594294050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwMyFLLAxN8TOp2aqqKZXKY6CsluM4kqs8ip0g-Pe4LwYkJl9L5_uufQC4xmiEEcH3SvvRWrd6hDVCY0pOQB9zJiIRk_j0d8bjHrjwfo0QpYzQc9CjLKE8iVkfvE_gqrafxnlVwrRx2sDUmjKHRePgk2qNs6r0Q_gahia3Gs7T5yhNH-Ci2pSmMnWrWtvUUNU5nH2pyta7-yU4K0LOXB3OAVils7fpY7R8mS-mk2WkGIrbyDBDMRa5ZkQImmiuBBO8QBgxEovwQ0q5IpxzobLCYIJVko2pSXgRJ5nAjA7A3b5345qPzvhWVtZrU5aqNk3nJeEiVDPEUUBv_6DrpnN1eJ0kMY45QyKsGwC0p7RrvHemkBtnK-W-JUZy61wG53LrXB6ch8jNobjLKpP_Bo6SAzDcA7vocem_fT-6j4ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616540913</pqid></control><display><type>article</type><title>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gale, Julian D ; LeBlanc, Luc M ; Spackman, Peter R ; Silvestri, Alessandro ; Raiteri, Paolo</creator><creatorcontrib>Gale, Julian D ; LeBlanc, Luc M ; Spackman, Peter R ; Silvestri, Alessandro ; Raiteri, Paolo</creatorcontrib><description>In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.1c00832</identifier><identifier>PMID: 34735764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Boundary conditions ; Brillouin zones ; Cartesian coordinates ; Condensed Matter, Interfaces, and Materials ; Coordination numbers ; Covalent bonds ; Damping ; Dispersion ; Numerical integration</subject><ispartof>Journal of chemical theory and computation, 2021-12, Vol.17 (12), p.7827-7849</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 14, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</citedby><cites>FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</cites><orcidid>0000-0003-0692-0505 ; 0000-0003-2944-2737 ; 0000-0001-5560-7676 ; 0000-0002-6532-8571 ; 0000-0001-9587-9457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34735764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gale, Julian D</creatorcontrib><creatorcontrib>LeBlanc, Luc M</creatorcontrib><creatorcontrib>Spackman, Peter R</creatorcontrib><creatorcontrib>Silvestri, Alessandro</creatorcontrib><creatorcontrib>Raiteri, Paolo</creatorcontrib><title>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs.</description><subject>Boundary conditions</subject><subject>Brillouin zones</subject><subject>Cartesian coordinates</subject><subject>Condensed Matter, Interfaces, and Materials</subject><subject>Coordination numbers</subject><subject>Covalent bonds</subject><subject>Damping</subject><subject>Dispersion</subject><subject>Numerical integration</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwMyFLLAxN8TOp2aqqKZXKY6CsluM4kqs8ip0g-Pe4LwYkJl9L5_uufQC4xmiEEcH3SvvRWrd6hDVCY0pOQB9zJiIRk_j0d8bjHrjwfo0QpYzQc9CjLKE8iVkfvE_gqrafxnlVwrRx2sDUmjKHRePgk2qNs6r0Q_gahia3Gs7T5yhNH-Ci2pSmMnWrWtvUUNU5nH2pyta7-yU4K0LOXB3OAVils7fpY7R8mS-mk2WkGIrbyDBDMRa5ZkQImmiuBBO8QBgxEovwQ0q5IpxzobLCYIJVko2pSXgRJ5nAjA7A3b5345qPzvhWVtZrU5aqNk3nJeEiVDPEUUBv_6DrpnN1eJ0kMY45QyKsGwC0p7RrvHemkBtnK-W-JUZy61wG53LrXB6ch8jNobjLKpP_Bo6SAzDcA7vocem_fT-6j4ng</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Gale, Julian D</creator><creator>LeBlanc, Luc M</creator><creator>Spackman, Peter R</creator><creator>Silvestri, Alessandro</creator><creator>Raiteri, Paolo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0692-0505</orcidid><orcidid>https://orcid.org/0000-0003-2944-2737</orcidid><orcidid>https://orcid.org/0000-0001-5560-7676</orcidid><orcidid>https://orcid.org/0000-0002-6532-8571</orcidid><orcidid>https://orcid.org/0000-0001-9587-9457</orcidid></search><sort><creationdate>20211214</creationdate><title>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</title><author>Gale, Julian D ; LeBlanc, Luc M ; Spackman, Peter R ; Silvestri, Alessandro ; Raiteri, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Brillouin zones</topic><topic>Cartesian coordinates</topic><topic>Condensed Matter, Interfaces, and Materials</topic><topic>Coordination numbers</topic><topic>Covalent bonds</topic><topic>Damping</topic><topic>Dispersion</topic><topic>Numerical integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gale, Julian D</creatorcontrib><creatorcontrib>LeBlanc, Luc M</creatorcontrib><creatorcontrib>Spackman, Peter R</creatorcontrib><creatorcontrib>Silvestri, Alessandro</creatorcontrib><creatorcontrib>Raiteri, Paolo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gale, Julian D</au><au>LeBlanc, Luc M</au><au>Spackman, Peter R</au><au>Silvestri, Alessandro</au><au>Raiteri, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2021-12-14</date><risdate>2021</risdate><volume>17</volume><issue>12</issue><spage>7827</spage><epage>7849</epage><pages>7827-7849</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In this study, the adaption of the recently published molecular GFN-FF for periodic boundary conditions (pGFN-FF) is described through the use of neighbor lists combined with appropriate charge sums to handle any dimensionality from 1D polymers to 2D surfaces and 3D solids. Numerical integration over the Brillouin zone for the calculation of π bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method to handle periodicity, improvements to the method are proposed in regard to the calculation of topological charges through the inclusion of a screened Coulomb term that leads to more physical charges and avoids a number of pathological cases. Short-range damping of three-body dispersion is also included to avoid collapse of some structures. Analytic second derivatives are also formulated with respect to both Cartesian and strain variables, including prescreening of terms to accelerate the dispersion/coordination number contribution to the Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials in order to examine how well this universal model performs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34735764</pmid><doi>10.1021/acs.jctc.1c00832</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0692-0505</orcidid><orcidid>https://orcid.org/0000-0003-2944-2737</orcidid><orcidid>https://orcid.org/0000-0001-5560-7676</orcidid><orcidid>https://orcid.org/0000-0002-6532-8571</orcidid><orcidid>https://orcid.org/0000-0001-9587-9457</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2021-12, Vol.17 (12), p.7827-7849 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2594294050 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Boundary conditions Brillouin zones Cartesian coordinates Condensed Matter, Interfaces, and Materials Coordination numbers Covalent bonds Damping Dispersion Numerical integration |
title | A Universal Force Field for Materials, Periodic GFN-FF: Implementation and Examination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Force%20Field%20for%20Materials,%20Periodic%20GFN-FF:%20Implementation%20and%20Examination&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Gale,%20Julian%20D&rft.date=2021-12-14&rft.volume=17&rft.issue=12&rft.spage=7827&rft.epage=7849&rft.pages=7827-7849&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.1c00832&rft_dat=%3Cproquest_cross%3E2594294050%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a406t-e4e3119dc429937c5a9495f0104269021335a25559abfe121a7b83e75f67b9143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616540913&rft_id=info:pmid/34735764&rfr_iscdi=true |