Loading…

The Road for 2D Semiconductors in the Silicon Age

Continued reduction in transistor size can improve the performance of silicon integrated circuits (ICs). However, as Moore's law approaches physical limits, high‐performance growth in silicon ICs becomes unsustainable, due to challenges of scaling, energy efficiency, and memory limitations. The...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2022-12, Vol.34 (48), p.e2106886-n/a
Main Authors: Wang, Shuiyuan, Liu, Xiaoxian, Zhou, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Continued reduction in transistor size can improve the performance of silicon integrated circuits (ICs). However, as Moore's law approaches physical limits, high‐performance growth in silicon ICs becomes unsustainable, due to challenges of scaling, energy efficiency, and memory limitations. The ultrathin layers, diverse band structures, unique electronic properties, and silicon‐compatible processes of 2D materials create the potential to consistently drive advanced performance in ICs. Here, the potential of fusing 2D materials with silicon ICs to minimize the challenges in silicon ICs, and to create technologies beyond the von Neumann architecture, is presented, and the killer applications for 2D materials in logic and memory devices to ease scaling, energy efficiency bottlenecks, and memory dilemmas encountered in silicon ICs are discussed. The fusion of 2D materials allows the creation of all‐in‐one perception, memory, and computation technologies beyond the von Neumann architecture to enhance system efficiency and remove computing power bottlenecks. Progress on the 2D ICs demonstration is summarized, as well as the technical hurdles it faces in terms of wafer‐scale heterostructure growth, transfer, and compatible integration with silicon ICs. Finally, the promising pathways and obstacles to the technological advances in ICs due to the integration of 2D materials with silicon are presented. The potential of fusing 2D materials with silicon technologies, including 2D logic and memory devices, enabling the mitigation of challenges related to silicon integrated circuits (ICs) and even the creation of technologies beyond silicon, is highlighted. The progress of 2D IC applications and the prospects for realizing wafer‐scale heterogeneous integration compatible with silicon ICs are also summarized.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202106886