Loading…

Chemoinformatics-Driven Design of New Physical Solvents for Selective CO2 Absorption

The removal of CO2 from gases is an important industrial process in the transition to a low-carbon economy. The use of selective physical (co-)solvents is especially perspective in cases when the amount of CO2 is large as it enables one to lower the energy requirements for solvent regeneration. Howe...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2021-11, Vol.55 (22), p.15542-15553
Main Authors: Orlov, Alexey A, Demenko, Daryna Yu, Bignaud, Charles, Valtz, Alain, Marcou, Gilles, Horvath, Dragos, Coquelet, Christophe, Varnek, Alexandre, de Meyer, Frédérick
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The removal of CO2 from gases is an important industrial process in the transition to a low-carbon economy. The use of selective physical (co-)solvents is especially perspective in cases when the amount of CO2 is large as it enables one to lower the energy requirements for solvent regeneration. However, only a few physical solvents have found industrial application and the design of new ones can pave the way to more efficient gas treatment techniques. Experimental screening of gas solubility is a labor-intensive process, and solubility modeling is a viable strategy to reduce the number of solvents subject to experimental measurements. In this paper, a chemoinformatics-based modeling workflow was applied to build a predictive model for the solubility of CO2 and four other industrially important gases (CO, CH4, H2, and N2). A dataset containing solubilities of gases in 280 solvents was collected from literature sources and supplemented with the new data for six solvents measured in the present study. A modeling workflow based on the usage of several state-of-the-art machine learning algorithms was applied to establish quantitative structure–solubility relationships. The best models were used to perform virtual screening of the industrially produced chemicals. It enabled the identification of compounds with high predicted CO2 solubility and selectivity toward other gases. The prediction for one of the compounds, 4-methylmorpholine, was confirmed experimentally.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c04092