Loading…

Homologous Bromides Treatment for Improving the Open‐Circuit Voltage of Perovskite Solar Cells

The power conversion efficiency (PCE) of solution‐processed organic–inorganic mixed halide perovskite solar cells has achieved rapid improvement. However, it is imperative to minimize the voltage deficit (Woc = Eg/q − Voc) for their PCE to approach the theoretical limit. Herein, the strategy of depo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2022-02, Vol.34 (6), p.e2106280-n/a
Main Authors: Li, Yong, Xu, Weidong, Mussakhanuly, Nursultan, Cho, Yongyoon, Bing, Jueming, Zheng, Jianghui, Tang, Shi, Liu, Yang, Shi, Guozheng, Liu, Zeke, Zhang, Qing, Durrant, James R., Ma, Wanli, Ho‐Baillie, Anita W. Y., Huang, Shujuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4130-39c13a12d9fb8897436fcda16682f9839bfba1357741ad8860df9a4c762b5a9b3
cites cdi_FETCH-LOGICAL-c4130-39c13a12d9fb8897436fcda16682f9839bfba1357741ad8860df9a4c762b5a9b3
container_end_page n/a
container_issue 6
container_start_page e2106280
container_title Advanced materials (Weinheim)
container_volume 34
creator Li, Yong
Xu, Weidong
Mussakhanuly, Nursultan
Cho, Yongyoon
Bing, Jueming
Zheng, Jianghui
Tang, Shi
Liu, Yang
Shi, Guozheng
Liu, Zeke
Zhang, Qing
Durrant, James R.
Ma, Wanli
Ho‐Baillie, Anita W. Y.
Huang, Shujuan
description The power conversion efficiency (PCE) of solution‐processed organic–inorganic mixed halide perovskite solar cells has achieved rapid improvement. However, it is imperative to minimize the voltage deficit (Woc = Eg/q − Voc) for their PCE to approach the theoretical limit. Herein, the strategy of depositing homologous bromide salts on the perovskite surface to achieve a surface and bulk passivation for the fabrication of solar cells with high open‐circuit voltage is reported. Distinct from the conclusions given by previous works, that homologous bromides such as FABr only react with PbI2 to form a large‐bandgap perovskite layer on top of the original perovskite, this work shows that the bromide also penetrates the perovskite film and passivates the perovskite in the bulk. This is confirmed by the small‐bandgap enlargement observed by absorbance and photoluminescence, and the bromide element ratio increasing in the bulk by time‐of‐flight secondary‐ion mass spectrometry and depth‐resolved X‐ray photoelectron spectroscopy. Furthermore, a clear suppression of non‐radiative recombination is confirmed by a variety of characterization methods. This work provides a simple and universal way to reduce the Woc of single‐junction perovskite solar cells and it will also shed light on developing other high‐performance optoelectronic devices, including perovskite‐based tandems and light‐emitting diodes. Perovskite surface treatment by homologous bromide salts is investigated. It is found that bromides not only passivate surface defects but also penetrate into the perovskite providing bulk passivation. This leads to a large voltage of 1.24 V in a 1.63 eV bandgap device and an efficiency of 23.7% in a 1.56 eV bandgap device.
doi_str_mv 10.1002/adma.202106280
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2594297599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594297599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-39c13a12d9fb8897436fcda16682f9839bfba1357741ad8860df9a4c762b5a9b3</originalsourceid><addsrcrecordid>eNqFkLtO7DAQhi0Egj1AS4ks0dBk8S1OplwWDiCBQOLSGiexl0ASL3Zyjuh4BJ6RJ8FouUg0FKNpvvn1z4fQFiVjSgjb01Wrx4wwSiTLyRIa0ZTRRBBIl9GIAE8TkCJfQ39CuCeEgCRyFa1xkQkaZ4Ruj13rGjdzQ8D73rV1ZQK-8kb3rel6bJ3HJ-3cu391N8P9ncHnc9O9Pr9Ma18OdY9vXNPrmcHO4gsTsfBQ9wZfukZ7PDVNEzbQitVNMJsfex1d_z28mh4np-dHJ9PJaVIKyknCoaRcU1aBLfIcMsGlLStNpcyZhZxDYQtNeZrF4rrKc0kqC1qUmWRFqqHg62h3kRvLPg4m9KqtQxkb6M7E5xRLQTDIUoCI7vxA793gu9hOMckyIiCKitR4QZXeheCNVXNft9o_KUrUu3v17l59uY8H2x-xQ9Ga6gv_lB0BWAD_68Y8_RKnJgdnk-_wN1bEkME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627049009</pqid></control><display><type>article</type><title>Homologous Bromides Treatment for Improving the Open‐Circuit Voltage of Perovskite Solar Cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Yong ; Xu, Weidong ; Mussakhanuly, Nursultan ; Cho, Yongyoon ; Bing, Jueming ; Zheng, Jianghui ; Tang, Shi ; Liu, Yang ; Shi, Guozheng ; Liu, Zeke ; Zhang, Qing ; Durrant, James R. ; Ma, Wanli ; Ho‐Baillie, Anita W. Y. ; Huang, Shujuan</creator><creatorcontrib>Li, Yong ; Xu, Weidong ; Mussakhanuly, Nursultan ; Cho, Yongyoon ; Bing, Jueming ; Zheng, Jianghui ; Tang, Shi ; Liu, Yang ; Shi, Guozheng ; Liu, Zeke ; Zhang, Qing ; Durrant, James R. ; Ma, Wanli ; Ho‐Baillie, Anita W. Y. ; Huang, Shujuan</creatorcontrib><description>The power conversion efficiency (PCE) of solution‐processed organic–inorganic mixed halide perovskite solar cells has achieved rapid improvement. However, it is imperative to minimize the voltage deficit (Woc = Eg/q − Voc) for their PCE to approach the theoretical limit. Herein, the strategy of depositing homologous bromide salts on the perovskite surface to achieve a surface and bulk passivation for the fabrication of solar cells with high open‐circuit voltage is reported. Distinct from the conclusions given by previous works, that homologous bromides such as FABr only react with PbI2 to form a large‐bandgap perovskite layer on top of the original perovskite, this work shows that the bromide also penetrates the perovskite film and passivates the perovskite in the bulk. This is confirmed by the small‐bandgap enlargement observed by absorbance and photoluminescence, and the bromide element ratio increasing in the bulk by time‐of‐flight secondary‐ion mass spectrometry and depth‐resolved X‐ray photoelectron spectroscopy. Furthermore, a clear suppression of non‐radiative recombination is confirmed by a variety of characterization methods. This work provides a simple and universal way to reduce the Woc of single‐junction perovskite solar cells and it will also shed light on developing other high‐performance optoelectronic devices, including perovskite‐based tandems and light‐emitting diodes. Perovskite surface treatment by homologous bromide salts is investigated. It is found that bromides not only passivate surface defects but also penetrate into the perovskite providing bulk passivation. This leads to a large voltage of 1.24 V in a 1.63 eV bandgap device and an efficiency of 23.7% in a 1.56 eV bandgap device.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202106280</identifier><identifier>PMID: 34741474</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bromides ; Circuits ; Electric potential ; Energy conversion efficiency ; Energy gap ; high efficiency ; Homology ; Light emitting diodes ; Mass spectrometry ; Materials science ; Optoelectronic devices ; perovskite solar cells ; Perovskites ; Photoelectrons ; Photoluminescence ; Photovoltaic cells ; Radiative recombination ; Solar cells ; surface passivation ; V oc loss ; Voltage</subject><ispartof>Advanced materials (Weinheim), 2022-02, Vol.34 (6), p.e2106280-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-39c13a12d9fb8897436fcda16682f9839bfba1357741ad8860df9a4c762b5a9b3</citedby><cites>FETCH-LOGICAL-c4130-39c13a12d9fb8897436fcda16682f9839bfba1357741ad8860df9a4c762b5a9b3</cites><orcidid>0000-0003-3468-4773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34741474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Xu, Weidong</creatorcontrib><creatorcontrib>Mussakhanuly, Nursultan</creatorcontrib><creatorcontrib>Cho, Yongyoon</creatorcontrib><creatorcontrib>Bing, Jueming</creatorcontrib><creatorcontrib>Zheng, Jianghui</creatorcontrib><creatorcontrib>Tang, Shi</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Shi, Guozheng</creatorcontrib><creatorcontrib>Liu, Zeke</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><creatorcontrib>Ho‐Baillie, Anita W. Y.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><title>Homologous Bromides Treatment for Improving the Open‐Circuit Voltage of Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The power conversion efficiency (PCE) of solution‐processed organic–inorganic mixed halide perovskite solar cells has achieved rapid improvement. However, it is imperative to minimize the voltage deficit (Woc = Eg/q − Voc) for their PCE to approach the theoretical limit. Herein, the strategy of depositing homologous bromide salts on the perovskite surface to achieve a surface and bulk passivation for the fabrication of solar cells with high open‐circuit voltage is reported. Distinct from the conclusions given by previous works, that homologous bromides such as FABr only react with PbI2 to form a large‐bandgap perovskite layer on top of the original perovskite, this work shows that the bromide also penetrates the perovskite film and passivates the perovskite in the bulk. This is confirmed by the small‐bandgap enlargement observed by absorbance and photoluminescence, and the bromide element ratio increasing in the bulk by time‐of‐flight secondary‐ion mass spectrometry and depth‐resolved X‐ray photoelectron spectroscopy. Furthermore, a clear suppression of non‐radiative recombination is confirmed by a variety of characterization methods. This work provides a simple and universal way to reduce the Woc of single‐junction perovskite solar cells and it will also shed light on developing other high‐performance optoelectronic devices, including perovskite‐based tandems and light‐emitting diodes. Perovskite surface treatment by homologous bromide salts is investigated. It is found that bromides not only passivate surface defects but also penetrate into the perovskite providing bulk passivation. This leads to a large voltage of 1.24 V in a 1.63 eV bandgap device and an efficiency of 23.7% in a 1.56 eV bandgap device.</description><subject>Bromides</subject><subject>Circuits</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>high efficiency</subject><subject>Homology</subject><subject>Light emitting diodes</subject><subject>Mass spectrometry</subject><subject>Materials science</subject><subject>Optoelectronic devices</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Solar cells</subject><subject>surface passivation</subject><subject>V oc loss</subject><subject>Voltage</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtO7DAQhi0Egj1AS4ks0dBk8S1OplwWDiCBQOLSGiexl0ASL3Zyjuh4BJ6RJ8FouUg0FKNpvvn1z4fQFiVjSgjb01Wrx4wwSiTLyRIa0ZTRRBBIl9GIAE8TkCJfQ39CuCeEgCRyFa1xkQkaZ4Ruj13rGjdzQ8D73rV1ZQK-8kb3rel6bJ3HJ-3cu391N8P9ncHnc9O9Pr9Ma18OdY9vXNPrmcHO4gsTsfBQ9wZfukZ7PDVNEzbQitVNMJsfex1d_z28mh4np-dHJ9PJaVIKyknCoaRcU1aBLfIcMsGlLStNpcyZhZxDYQtNeZrF4rrKc0kqC1qUmWRFqqHg62h3kRvLPg4m9KqtQxkb6M7E5xRLQTDIUoCI7vxA793gu9hOMckyIiCKitR4QZXeheCNVXNft9o_KUrUu3v17l59uY8H2x-xQ9Ga6gv_lB0BWAD_68Y8_RKnJgdnk-_wN1bEkME</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Li, Yong</creator><creator>Xu, Weidong</creator><creator>Mussakhanuly, Nursultan</creator><creator>Cho, Yongyoon</creator><creator>Bing, Jueming</creator><creator>Zheng, Jianghui</creator><creator>Tang, Shi</creator><creator>Liu, Yang</creator><creator>Shi, Guozheng</creator><creator>Liu, Zeke</creator><creator>Zhang, Qing</creator><creator>Durrant, James R.</creator><creator>Ma, Wanli</creator><creator>Ho‐Baillie, Anita W. Y.</creator><creator>Huang, Shujuan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3468-4773</orcidid></search><sort><creationdate>20220201</creationdate><title>Homologous Bromides Treatment for Improving the Open‐Circuit Voltage of Perovskite Solar Cells</title><author>Li, Yong ; Xu, Weidong ; Mussakhanuly, Nursultan ; Cho, Yongyoon ; Bing, Jueming ; Zheng, Jianghui ; Tang, Shi ; Liu, Yang ; Shi, Guozheng ; Liu, Zeke ; Zhang, Qing ; Durrant, James R. ; Ma, Wanli ; Ho‐Baillie, Anita W. Y. ; Huang, Shujuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-39c13a12d9fb8897436fcda16682f9839bfba1357741ad8860df9a4c762b5a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bromides</topic><topic>Circuits</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>high efficiency</topic><topic>Homology</topic><topic>Light emitting diodes</topic><topic>Mass spectrometry</topic><topic>Materials science</topic><topic>Optoelectronic devices</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Solar cells</topic><topic>surface passivation</topic><topic>V oc loss</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Xu, Weidong</creatorcontrib><creatorcontrib>Mussakhanuly, Nursultan</creatorcontrib><creatorcontrib>Cho, Yongyoon</creatorcontrib><creatorcontrib>Bing, Jueming</creatorcontrib><creatorcontrib>Zheng, Jianghui</creatorcontrib><creatorcontrib>Tang, Shi</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Shi, Guozheng</creatorcontrib><creatorcontrib>Liu, Zeke</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Durrant, James R.</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><creatorcontrib>Ho‐Baillie, Anita W. Y.</creatorcontrib><creatorcontrib>Huang, Shujuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yong</au><au>Xu, Weidong</au><au>Mussakhanuly, Nursultan</au><au>Cho, Yongyoon</au><au>Bing, Jueming</au><au>Zheng, Jianghui</au><au>Tang, Shi</au><au>Liu, Yang</au><au>Shi, Guozheng</au><au>Liu, Zeke</au><au>Zhang, Qing</au><au>Durrant, James R.</au><au>Ma, Wanli</au><au>Ho‐Baillie, Anita W. Y.</au><au>Huang, Shujuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homologous Bromides Treatment for Improving the Open‐Circuit Voltage of Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>e2106280</spage><epage>n/a</epage><pages>e2106280-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The power conversion efficiency (PCE) of solution‐processed organic–inorganic mixed halide perovskite solar cells has achieved rapid improvement. However, it is imperative to minimize the voltage deficit (Woc = Eg/q − Voc) for their PCE to approach the theoretical limit. Herein, the strategy of depositing homologous bromide salts on the perovskite surface to achieve a surface and bulk passivation for the fabrication of solar cells with high open‐circuit voltage is reported. Distinct from the conclusions given by previous works, that homologous bromides such as FABr only react with PbI2 to form a large‐bandgap perovskite layer on top of the original perovskite, this work shows that the bromide also penetrates the perovskite film and passivates the perovskite in the bulk. This is confirmed by the small‐bandgap enlargement observed by absorbance and photoluminescence, and the bromide element ratio increasing in the bulk by time‐of‐flight secondary‐ion mass spectrometry and depth‐resolved X‐ray photoelectron spectroscopy. Furthermore, a clear suppression of non‐radiative recombination is confirmed by a variety of characterization methods. This work provides a simple and universal way to reduce the Woc of single‐junction perovskite solar cells and it will also shed light on developing other high‐performance optoelectronic devices, including perovskite‐based tandems and light‐emitting diodes. Perovskite surface treatment by homologous bromide salts is investigated. It is found that bromides not only passivate surface defects but also penetrate into the perovskite providing bulk passivation. This leads to a large voltage of 1.24 V in a 1.63 eV bandgap device and an efficiency of 23.7% in a 1.56 eV bandgap device.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34741474</pmid><doi>10.1002/adma.202106280</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3468-4773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-02, Vol.34 (6), p.e2106280-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2594297599
source Wiley-Blackwell Read & Publish Collection
subjects Bromides
Circuits
Electric potential
Energy conversion efficiency
Energy gap
high efficiency
Homology
Light emitting diodes
Mass spectrometry
Materials science
Optoelectronic devices
perovskite solar cells
Perovskites
Photoelectrons
Photoluminescence
Photovoltaic cells
Radiative recombination
Solar cells
surface passivation
V oc loss
Voltage
title Homologous Bromides Treatment for Improving the Open‐Circuit Voltage of Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homologous%20Bromides%20Treatment%20for%20Improving%20the%20Open%E2%80%90Circuit%20Voltage%20of%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Yong&rft.date=2022-02-01&rft.volume=34&rft.issue=6&rft.spage=e2106280&rft.epage=n/a&rft.pages=e2106280-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202106280&rft_dat=%3Cproquest_cross%3E2594297599%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4130-39c13a12d9fb8897436fcda16682f9839bfba1357741ad8860df9a4c762b5a9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627049009&rft_id=info:pmid/34741474&rfr_iscdi=true