Loading…
Lattice Polarity Manipulation of Quasi‐vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration
Quasi van der Waals epitaxy, a pioneering epitaxy of sp3‐hybridized semiconductor films on sp2‐hybridized 2D materials, provides a way, in principle, to achieve single‐crystal epilayers with preferred atom configurations that are free of substrate. Unfortunately, this has not been experimentally con...
Saved in:
Published in: | Advanced materials (Weinheim) 2022-02, Vol.34 (5), p.e2106814-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quasi van der Waals epitaxy, a pioneering epitaxy of sp3‐hybridized semiconductor films on sp2‐hybridized 2D materials, provides a way, in principle, to achieve single‐crystal epilayers with preferred atom configurations that are free of substrate. Unfortunately, this has not been experimentally confirmed in the case of the hexagonal semiconductor III‐nitride epilayer until now. Here, it is reported that the epitaxy of gallium nitride (GaN) on graphene can tune the atom arrangement (lattice polarity) through manipulation of the interface atomic configuration, where GaN films with gallium and nitrogen polarity are achieved by forming CONGa(3) or COGaN(3) configurations, respectively, on artificial CO surface dangling bonds by atomic oxygen pre‐irradiation on trilayer graphene. Furthermore, an aluminum nitride buffer/interlayer leads to unique metal polarity due to the formation of an AlON thin layer in a growth environment containing trace amounts of oxygen, which explains the open question of why those reported wurtzite III‐nitride films on 2D materials always exhibit metal polarity. The reported atomic modulation through interface manipulation provides an effective model for hexagonal nitride semiconductor layers grown on graphene, which definitely promotes the development of novel semiconductor devices.
The manipulation of the lattice polarity of quasi‐vdW epitaxial GaN on graphene through controlling the interface atomic configuration is reported. This polarity‐control rule is not affected by the growth method and is free of either crystalline or non‐crystalline substrates. It makes the epitaxy of III‐nitrides with preferred lattice polarity possible and improves the ability to fabricate advanced semiconductor devices. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202106814 |