Loading…
White matter connectivity networks predict levodopa-induced dyskinesia in Parkinson’s disease
Background Although levodopa-induced dyskinesia-relevant white matter change has been evaluated, it is uncertain whether these changes may reflect the underlying predisposing conditions leading to the development of levodopa-induced dyskinesia. Objective To elucidate the role of white matter connect...
Saved in:
Published in: | Journal of neurology 2022-06, Vol.269 (6), p.2948-2960 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-c9b4ec894b1bc839ce0afd090c4956c008a449c06e121e99d0faf9c17d3876583 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-c9b4ec894b1bc839ce0afd090c4956c008a449c06e121e99d0faf9c17d3876583 |
container_end_page | 2960 |
container_issue | 6 |
container_start_page | 2948 |
container_title | Journal of neurology |
container_volume | 269 |
creator | Jung, Jin Ho Kim, Yae Ji Chung, Seok Jong Yoo, Han Soo Lee, Yang Hyun Baik, Kyoungwon Jeong, Seong Ho Lee, Young Gun Lee, Hye Sun Ye, Byoung Seok Sohn, Young H. Jeong, Yong Lee, Phil Hyu |
description | Background
Although levodopa-induced dyskinesia-relevant white matter change has been evaluated, it is uncertain whether these changes may reflect the underlying predisposing conditions leading to the development of levodopa-induced dyskinesia.
Objective
To elucidate the role of white matter connectivity networks in the development of levodopa-induced dyskinesia in drug-naïve Parkinson’s disease.
Methods
We recruited 30 patients who developed levodopa-induced dyskinesia within 5 years from MRI acquisition (vulnerable-group), 47 patients who had not developed levodopa-induced dyskinesia within 5 years (resistant-group), and 28 controls. We performed comparative analyses of whole-brain white matter integrity and connectivity using tract-based spatial and network- and degree-based statistics. We evaluated the predictability of levodopa-induced dyskinesia development and relationship with its latency, using the average connectivity strength as a predictor in Cox- and linear-regression, respectively.
Results
Mean-diffusivity was lower mainly at the left frontal region in the vulnerable-group compared to the resistant-group. Network-based statistics identified a subnetwork consisting of the bilateral fronto-striato-pallido-thalamic and lateral parietal regions (subnetwork A) and degree-based statistics identified four subnetworks (hub-subnetwork) consisting of edges centered on the left superior frontal gyrus, left putamen, left insular, or left precentral gyrus, where the vulnerable-group had stronger connectivity compared to the resistant-group. Stronger connectivity within the subnetwork A and hub-subnetwork centered on the left superior frontal gyrus was a predictor of levodopa-induced dyskinesia development independent of known risk factors and had an inverse relationship with its latency.
Conclusions
Our data suggest that white matter connectivity subnetworks within corticostriatal regions play a pivotal role in the development of levodopa-induced dyskinesia. |
doi_str_mv | 10.1007/s00415-021-10883-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2596457036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666711154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-c9b4ec894b1bc839ce0afd090c4956c008a449c06e121e99d0faf9c17d3876583</originalsourceid><addsrcrecordid>eNp9kEtuFDEQhi1ERIbABVggS2zYmJTbj24vURQeUiSyALG0PHY1OJmxB9sdNDuuwfVyEgwTQGLBqlSqr_4qfYQ84fCCA4ynFUByxWDgjMM0CcbvkRWXYmBcKnOfrEBIYEooeUwe1noFAFMfPCDHQo564FKviP34OTakW9caFupzSuhbvIltTxO2r7lcV7orGKJvdIM3OeSdYzGFxWOgYV-vY8IaHY2JXrrSu5rT7bfvlYZY0VV8RI5mt6n4-K6ekA-vzt-fvWEX716_PXt5wbwYVWPerCX6ycg1X_tJGI_g5gAGvDRK-_64k9J40MgHjsYEmN1sPB-DmEatJnFCnh9ydyV_WbA2u43V42bjEual2kEZLdUIQnf02T_oVV5K6t_ZQWs9cs6V7NRwoHzJtRac7a7ErSt7y8H-1G8P-m3Xb3_pt7wvPb2LXtZbDH9WfvvugDgAtY_SJyx_b_8n9gfjAZHS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666711154</pqid></control><display><type>article</type><title>White matter connectivity networks predict levodopa-induced dyskinesia in Parkinson’s disease</title><source>Springer Nature</source><creator>Jung, Jin Ho ; Kim, Yae Ji ; Chung, Seok Jong ; Yoo, Han Soo ; Lee, Yang Hyun ; Baik, Kyoungwon ; Jeong, Seong Ho ; Lee, Young Gun ; Lee, Hye Sun ; Ye, Byoung Seok ; Sohn, Young H. ; Jeong, Yong ; Lee, Phil Hyu</creator><creatorcontrib>Jung, Jin Ho ; Kim, Yae Ji ; Chung, Seok Jong ; Yoo, Han Soo ; Lee, Yang Hyun ; Baik, Kyoungwon ; Jeong, Seong Ho ; Lee, Young Gun ; Lee, Hye Sun ; Ye, Byoung Seok ; Sohn, Young H. ; Jeong, Yong ; Lee, Phil Hyu</creatorcontrib><description>Background
Although levodopa-induced dyskinesia-relevant white matter change has been evaluated, it is uncertain whether these changes may reflect the underlying predisposing conditions leading to the development of levodopa-induced dyskinesia.
Objective
To elucidate the role of white matter connectivity networks in the development of levodopa-induced dyskinesia in drug-naïve Parkinson’s disease.
Methods
We recruited 30 patients who developed levodopa-induced dyskinesia within 5 years from MRI acquisition (vulnerable-group), 47 patients who had not developed levodopa-induced dyskinesia within 5 years (resistant-group), and 28 controls. We performed comparative analyses of whole-brain white matter integrity and connectivity using tract-based spatial and network- and degree-based statistics. We evaluated the predictability of levodopa-induced dyskinesia development and relationship with its latency, using the average connectivity strength as a predictor in Cox- and linear-regression, respectively.
Results
Mean-diffusivity was lower mainly at the left frontal region in the vulnerable-group compared to the resistant-group. Network-based statistics identified a subnetwork consisting of the bilateral fronto-striato-pallido-thalamic and lateral parietal regions (subnetwork A) and degree-based statistics identified four subnetworks (hub-subnetwork) consisting of edges centered on the left superior frontal gyrus, left putamen, left insular, or left precentral gyrus, where the vulnerable-group had stronger connectivity compared to the resistant-group. Stronger connectivity within the subnetwork A and hub-subnetwork centered on the left superior frontal gyrus was a predictor of levodopa-induced dyskinesia development independent of known risk factors and had an inverse relationship with its latency.
Conclusions
Our data suggest that white matter connectivity subnetworks within corticostriatal regions play a pivotal role in the development of levodopa-induced dyskinesia.</description><identifier>ISSN: 0340-5354</identifier><identifier>ISSN: 1432-1459</identifier><identifier>EISSN: 1432-1459</identifier><identifier>DOI: 10.1007/s00415-021-10883-1</identifier><identifier>PMID: 34762146</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antiparkinson Agents - adverse effects ; Comparative analysis ; Dyskinesia ; Dyskinesia, Drug-Induced - diagnostic imaging ; Dyskinesia, Drug-Induced - etiology ; Frontal gyrus ; Humans ; Latency ; Levodopa ; Levodopa - adverse effects ; Magnetic resonance imaging ; Medicine ; Medicine & Public Health ; Movement disorders ; Neural networks ; Neurodegenerative diseases ; Neurology ; Neuroradiology ; Neurosciences ; Original Communication ; Parkinson Disease - drug therapy ; Parkinson's disease ; Precentral gyrus ; Putamen ; Risk factors ; Statistics ; Substantia alba ; Thalamus ; White Matter - diagnostic imaging</subject><ispartof>Journal of neurology, 2022-06, Vol.269 (6), p.2948-2960</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-c9b4ec894b1bc839ce0afd090c4956c008a449c06e121e99d0faf9c17d3876583</citedby><cites>FETCH-LOGICAL-c375t-c9b4ec894b1bc839ce0afd090c4956c008a449c06e121e99d0faf9c17d3876583</cites><orcidid>0000-0001-9931-8462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34762146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Jin Ho</creatorcontrib><creatorcontrib>Kim, Yae Ji</creatorcontrib><creatorcontrib>Chung, Seok Jong</creatorcontrib><creatorcontrib>Yoo, Han Soo</creatorcontrib><creatorcontrib>Lee, Yang Hyun</creatorcontrib><creatorcontrib>Baik, Kyoungwon</creatorcontrib><creatorcontrib>Jeong, Seong Ho</creatorcontrib><creatorcontrib>Lee, Young Gun</creatorcontrib><creatorcontrib>Lee, Hye Sun</creatorcontrib><creatorcontrib>Ye, Byoung Seok</creatorcontrib><creatorcontrib>Sohn, Young H.</creatorcontrib><creatorcontrib>Jeong, Yong</creatorcontrib><creatorcontrib>Lee, Phil Hyu</creatorcontrib><title>White matter connectivity networks predict levodopa-induced dyskinesia in Parkinson’s disease</title><title>Journal of neurology</title><addtitle>J Neurol</addtitle><addtitle>J Neurol</addtitle><description>Background
Although levodopa-induced dyskinesia-relevant white matter change has been evaluated, it is uncertain whether these changes may reflect the underlying predisposing conditions leading to the development of levodopa-induced dyskinesia.
Objective
To elucidate the role of white matter connectivity networks in the development of levodopa-induced dyskinesia in drug-naïve Parkinson’s disease.
Methods
We recruited 30 patients who developed levodopa-induced dyskinesia within 5 years from MRI acquisition (vulnerable-group), 47 patients who had not developed levodopa-induced dyskinesia within 5 years (resistant-group), and 28 controls. We performed comparative analyses of whole-brain white matter integrity and connectivity using tract-based spatial and network- and degree-based statistics. We evaluated the predictability of levodopa-induced dyskinesia development and relationship with its latency, using the average connectivity strength as a predictor in Cox- and linear-regression, respectively.
Results
Mean-diffusivity was lower mainly at the left frontal region in the vulnerable-group compared to the resistant-group. Network-based statistics identified a subnetwork consisting of the bilateral fronto-striato-pallido-thalamic and lateral parietal regions (subnetwork A) and degree-based statistics identified four subnetworks (hub-subnetwork) consisting of edges centered on the left superior frontal gyrus, left putamen, left insular, or left precentral gyrus, where the vulnerable-group had stronger connectivity compared to the resistant-group. Stronger connectivity within the subnetwork A and hub-subnetwork centered on the left superior frontal gyrus was a predictor of levodopa-induced dyskinesia development independent of known risk factors and had an inverse relationship with its latency.
Conclusions
Our data suggest that white matter connectivity subnetworks within corticostriatal regions play a pivotal role in the development of levodopa-induced dyskinesia.</description><subject>Antiparkinson Agents - adverse effects</subject><subject>Comparative analysis</subject><subject>Dyskinesia</subject><subject>Dyskinesia, Drug-Induced - diagnostic imaging</subject><subject>Dyskinesia, Drug-Induced - etiology</subject><subject>Frontal gyrus</subject><subject>Humans</subject><subject>Latency</subject><subject>Levodopa</subject><subject>Levodopa - adverse effects</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Movement disorders</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Original Communication</subject><subject>Parkinson Disease - drug therapy</subject><subject>Parkinson's disease</subject><subject>Precentral gyrus</subject><subject>Putamen</subject><subject>Risk factors</subject><subject>Statistics</subject><subject>Substantia alba</subject><subject>Thalamus</subject><subject>White Matter - diagnostic imaging</subject><issn>0340-5354</issn><issn>1432-1459</issn><issn>1432-1459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtuFDEQhi1ERIbABVggS2zYmJTbj24vURQeUiSyALG0PHY1OJmxB9sdNDuuwfVyEgwTQGLBqlSqr_4qfYQ84fCCA4ynFUByxWDgjMM0CcbvkRWXYmBcKnOfrEBIYEooeUwe1noFAFMfPCDHQo564FKviP34OTakW9caFupzSuhbvIltTxO2r7lcV7orGKJvdIM3OeSdYzGFxWOgYV-vY8IaHY2JXrrSu5rT7bfvlYZY0VV8RI5mt6n4-K6ekA-vzt-fvWEX716_PXt5wbwYVWPerCX6ycg1X_tJGI_g5gAGvDRK-_64k9J40MgHjsYEmN1sPB-DmEatJnFCnh9ydyV_WbA2u43V42bjEual2kEZLdUIQnf02T_oVV5K6t_ZQWs9cs6V7NRwoHzJtRac7a7ErSt7y8H-1G8P-m3Xb3_pt7wvPb2LXtZbDH9WfvvugDgAtY_SJyx_b_8n9gfjAZHS</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Jung, Jin Ho</creator><creator>Kim, Yae Ji</creator><creator>Chung, Seok Jong</creator><creator>Yoo, Han Soo</creator><creator>Lee, Yang Hyun</creator><creator>Baik, Kyoungwon</creator><creator>Jeong, Seong Ho</creator><creator>Lee, Young Gun</creator><creator>Lee, Hye Sun</creator><creator>Ye, Byoung Seok</creator><creator>Sohn, Young H.</creator><creator>Jeong, Yong</creator><creator>Lee, Phil Hyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9931-8462</orcidid></search><sort><creationdate>20220601</creationdate><title>White matter connectivity networks predict levodopa-induced dyskinesia in Parkinson’s disease</title><author>Jung, Jin Ho ; Kim, Yae Ji ; Chung, Seok Jong ; Yoo, Han Soo ; Lee, Yang Hyun ; Baik, Kyoungwon ; Jeong, Seong Ho ; Lee, Young Gun ; Lee, Hye Sun ; Ye, Byoung Seok ; Sohn, Young H. ; Jeong, Yong ; Lee, Phil Hyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-c9b4ec894b1bc839ce0afd090c4956c008a449c06e121e99d0faf9c17d3876583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiparkinson Agents - adverse effects</topic><topic>Comparative analysis</topic><topic>Dyskinesia</topic><topic>Dyskinesia, Drug-Induced - diagnostic imaging</topic><topic>Dyskinesia, Drug-Induced - etiology</topic><topic>Frontal gyrus</topic><topic>Humans</topic><topic>Latency</topic><topic>Levodopa</topic><topic>Levodopa - adverse effects</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Movement disorders</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Original Communication</topic><topic>Parkinson Disease - drug therapy</topic><topic>Parkinson's disease</topic><topic>Precentral gyrus</topic><topic>Putamen</topic><topic>Risk factors</topic><topic>Statistics</topic><topic>Substantia alba</topic><topic>Thalamus</topic><topic>White Matter - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Jin Ho</creatorcontrib><creatorcontrib>Kim, Yae Ji</creatorcontrib><creatorcontrib>Chung, Seok Jong</creatorcontrib><creatorcontrib>Yoo, Han Soo</creatorcontrib><creatorcontrib>Lee, Yang Hyun</creatorcontrib><creatorcontrib>Baik, Kyoungwon</creatorcontrib><creatorcontrib>Jeong, Seong Ho</creatorcontrib><creatorcontrib>Lee, Young Gun</creatorcontrib><creatorcontrib>Lee, Hye Sun</creatorcontrib><creatorcontrib>Ye, Byoung Seok</creatorcontrib><creatorcontrib>Sohn, Young H.</creatorcontrib><creatorcontrib>Jeong, Yong</creatorcontrib><creatorcontrib>Lee, Phil Hyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Jin Ho</au><au>Kim, Yae Ji</au><au>Chung, Seok Jong</au><au>Yoo, Han Soo</au><au>Lee, Yang Hyun</au><au>Baik, Kyoungwon</au><au>Jeong, Seong Ho</au><au>Lee, Young Gun</au><au>Lee, Hye Sun</au><au>Ye, Byoung Seok</au><au>Sohn, Young H.</au><au>Jeong, Yong</au><au>Lee, Phil Hyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>White matter connectivity networks predict levodopa-induced dyskinesia in Parkinson’s disease</atitle><jtitle>Journal of neurology</jtitle><stitle>J Neurol</stitle><addtitle>J Neurol</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>269</volume><issue>6</issue><spage>2948</spage><epage>2960</epage><pages>2948-2960</pages><issn>0340-5354</issn><issn>1432-1459</issn><eissn>1432-1459</eissn><abstract>Background
Although levodopa-induced dyskinesia-relevant white matter change has been evaluated, it is uncertain whether these changes may reflect the underlying predisposing conditions leading to the development of levodopa-induced dyskinesia.
Objective
To elucidate the role of white matter connectivity networks in the development of levodopa-induced dyskinesia in drug-naïve Parkinson’s disease.
Methods
We recruited 30 patients who developed levodopa-induced dyskinesia within 5 years from MRI acquisition (vulnerable-group), 47 patients who had not developed levodopa-induced dyskinesia within 5 years (resistant-group), and 28 controls. We performed comparative analyses of whole-brain white matter integrity and connectivity using tract-based spatial and network- and degree-based statistics. We evaluated the predictability of levodopa-induced dyskinesia development and relationship with its latency, using the average connectivity strength as a predictor in Cox- and linear-regression, respectively.
Results
Mean-diffusivity was lower mainly at the left frontal region in the vulnerable-group compared to the resistant-group. Network-based statistics identified a subnetwork consisting of the bilateral fronto-striato-pallido-thalamic and lateral parietal regions (subnetwork A) and degree-based statistics identified four subnetworks (hub-subnetwork) consisting of edges centered on the left superior frontal gyrus, left putamen, left insular, or left precentral gyrus, where the vulnerable-group had stronger connectivity compared to the resistant-group. Stronger connectivity within the subnetwork A and hub-subnetwork centered on the left superior frontal gyrus was a predictor of levodopa-induced dyskinesia development independent of known risk factors and had an inverse relationship with its latency.
Conclusions
Our data suggest that white matter connectivity subnetworks within corticostriatal regions play a pivotal role in the development of levodopa-induced dyskinesia.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34762146</pmid><doi>10.1007/s00415-021-10883-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9931-8462</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-5354 |
ispartof | Journal of neurology, 2022-06, Vol.269 (6), p.2948-2960 |
issn | 0340-5354 1432-1459 1432-1459 |
language | eng |
recordid | cdi_proquest_miscellaneous_2596457036 |
source | Springer Nature |
subjects | Antiparkinson Agents - adverse effects Comparative analysis Dyskinesia Dyskinesia, Drug-Induced - diagnostic imaging Dyskinesia, Drug-Induced - etiology Frontal gyrus Humans Latency Levodopa Levodopa - adverse effects Magnetic resonance imaging Medicine Medicine & Public Health Movement disorders Neural networks Neurodegenerative diseases Neurology Neuroradiology Neurosciences Original Communication Parkinson Disease - drug therapy Parkinson's disease Precentral gyrus Putamen Risk factors Statistics Substantia alba Thalamus White Matter - diagnostic imaging |
title | White matter connectivity networks predict levodopa-induced dyskinesia in Parkinson’s disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=White%20matter%20connectivity%20networks%20predict%20levodopa-induced%20dyskinesia%20in%20Parkinson%E2%80%99s%20disease&rft.jtitle=Journal%20of%20neurology&rft.au=Jung,%20Jin%20Ho&rft.date=2022-06-01&rft.volume=269&rft.issue=6&rft.spage=2948&rft.epage=2960&rft.pages=2948-2960&rft.issn=0340-5354&rft.eissn=1432-1459&rft_id=info:doi/10.1007/s00415-021-10883-1&rft_dat=%3Cproquest_cross%3E2666711154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-c9b4ec894b1bc839ce0afd090c4956c008a449c06e121e99d0faf9c17d3876583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666711154&rft_id=info:pmid/34762146&rfr_iscdi=true |