Loading…

MOF Encapsulating N‐Heterocyclic Carbene‐Ligated Copper Single‐Atom Site Catalyst towards Efficient Methane Electrosynthesis

The exploitation of highly efficient carbon dioxide reduction (CO2RR) electrocatalyst for methane (CH4) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N‐heterocyclic carbene (NHC)‐ligated copper single atom site (Cu SA...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2022-01, Vol.61 (4), p.e202114450-n/a
Main Authors: Chen, Shenghua, Li, Wen‐Hao, Jiang, Wenjun, Yang, Jiarui, Zhu, Jiexin, Wang, Liqiang, Ou, Honghui, Zhuang, Zechao, Chen, Mingzhao, Sun, Xiaohui, Wang, Dingsheng, Li, Yadong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The exploitation of highly efficient carbon dioxide reduction (CO2RR) electrocatalyst for methane (CH4) electrosynthesis has attracted great attention for the intermittent renewable electricity storage but remains challenging. Here, N‐heterocyclic carbene (NHC)‐ligated copper single atom site (Cu SAS) embedded in metal–organic framework is reported (2Bn‐Cu@UiO‐67), which can achieve an outstanding Faradaic efficiency (FE) of 81 % for the CO2 reduction to CH4 at −1.5 V vs. RHE with a current density of 420 mA cm−2. The CH4 FE of our catalyst remains above 70 % within a wide potential range and achieves an unprecedented turnover frequency (TOF) of 16.3 s−1. The σ donation of NHC enriches the surface electron density of Cu SAS and promotes the preferential adsorption of CHO* intermediates. The porosity of the catalyst facilitates the diffusion of CO2 to 2Bn‐Cu, significantly increasing the availability of each catalytic center. A catalyst with N‐heterocyclic carbene‐ligated Cu SAS as the active site, accompanied by many micro‐nano reactors, synergistically promotes the electrochemical synthesis of methane.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202114450