Loading…
Reinforcement Learning for Mobile Robotics Exploration: A Survey
Efficient exploration of unknown environments is a fundamental precondition for modern autonomous mobile robot applications. Aiming to design robust and effective robotic exploration strategies, suitable to complex real-world scenarios, the academic community has increasingly investigated the integr...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2023-08, Vol.34 (8), p.3796-3810 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-534757b1a5f12b83ec7236100d27b7d21f72668faec100693798215ba08e7603 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-534757b1a5f12b83ec7236100d27b7d21f72668faec100693798215ba08e7603 |
container_end_page | 3810 |
container_issue | 8 |
container_start_page | 3796 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Garaffa, Luiza Caetano Basso, Maik Konzen, Andrea Aparecida de Freitas, Edison Pignaton |
description | Efficient exploration of unknown environments is a fundamental precondition for modern autonomous mobile robot applications. Aiming to design robust and effective robotic exploration strategies, suitable to complex real-world scenarios, the academic community has increasingly investigated the integration of robotics with reinforcement learning (RL) techniques. This survey provides a comprehensive review of recent research works that use RL to design unknown environment exploration strategies for single and multirobots. The primary purpose of this study is to facilitate future research by compiling and analyzing the current state of works that link these two knowledge domains. This survey summarizes: what are the employed RL algorithms and how they compose the so far proposed mobile robot exploration strategies; how robotic exploration solutions are addressing typical RL problems like the exploration-exploitation dilemma, the curse of dimensionality, reward shaping, and slow learning convergence; and what are the performed experiments and software tools used for learning and testing. Achieved progress is described, and a discussion about remaining limitations and future perspectives is presented. |
doi_str_mv | 10.1109/TNNLS.2021.3124466 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597491119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9612713</ieee_id><sourcerecordid>2845769485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-534757b1a5f12b83ec7236100d27b7d21f72668faec100693798215ba08e7603</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoOnT_gIIUvHjZzEuapPHkGPMH1AlzB2-h7V6lo2tm0or-92Zu7mAuCS-f932PDyHnQIcAVN_Mp9P0dcgogyEHFsdSHpAeA8kGjCfJ4f6t3k5I3_slDUdSIWN9TE54rKQSEPfI3QyrprSuwBU2bZRi5pqqeY9CKXq2eVVjNLO5bavCR5OvdW1d1la2uY1G0WvnPvH7jByVWe2xv7tPyfx-Mh8_DtKXh6fxKB0UXEA7EGGkUDlkogSWJxwLxbgEShdM5WrBoFRMyqTMsAhFqbnSCQORZzRBJSk_Jdfb2LWzHx361qwqX2BdZw3azhsmtIo1AOiAXv1Dl7ZzTVjOsCQWSuo4EYFiW6pw1nuHpVm7apW5bwPUbAybX8NmY9jsDIemy110l69wsW_58xmAiy1QIeL-W0tgCjj_AcHHfJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845769485</pqid></control><display><type>article</type><title>Reinforcement Learning for Mobile Robotics Exploration: A Survey</title><source>IEEE Xplore (Online service)</source><creator>Garaffa, Luiza Caetano ; Basso, Maik ; Konzen, Andrea Aparecida ; de Freitas, Edison Pignaton</creator><creatorcontrib>Garaffa, Luiza Caetano ; Basso, Maik ; Konzen, Andrea Aparecida ; de Freitas, Edison Pignaton</creatorcontrib><description>Efficient exploration of unknown environments is a fundamental precondition for modern autonomous mobile robot applications. Aiming to design robust and effective robotic exploration strategies, suitable to complex real-world scenarios, the academic community has increasingly investigated the integration of robotics with reinforcement learning (RL) techniques. This survey provides a comprehensive review of recent research works that use RL to design unknown environment exploration strategies for single and multirobots. The primary purpose of this study is to facilitate future research by compiling and analyzing the current state of works that link these two knowledge domains. This survey summarizes: what are the employed RL algorithms and how they compose the so far proposed mobile robot exploration strategies; how robotic exploration solutions are addressing typical RL problems like the exploration-exploitation dilemma, the curse of dimensionality, reward shaping, and slow learning convergence; and what are the performed experiments and software tools used for learning and testing. Achieved progress is described, and a discussion about remaining limitations and future perspectives is presented.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3124466</identifier><identifier>PMID: 34767514</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computational modeling ; Cooperative exploration ; Electrical engineering ; Exploitation ; Learning ; Mathematical models ; mobile robot exploration ; Multiple robots ; multirobot exploration ; multirobot systems (MRSs) ; Navigation ; Numerical models ; Planning ; Reinforcement ; reinforcement learning (RL) ; Robotics ; Robots ; single robot exploration ; Software ; Surveys ; Unknown environments</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-08, Vol.34 (8), p.3796-3810</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-534757b1a5f12b83ec7236100d27b7d21f72668faec100693798215ba08e7603</citedby><cites>FETCH-LOGICAL-c351t-534757b1a5f12b83ec7236100d27b7d21f72668faec100693798215ba08e7603</cites><orcidid>0000-0001-9728-7906 ; 0000-0002-7896-5158 ; 0000-0003-4655-8889 ; 0000-0002-0858-3111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9612713$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34767514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garaffa, Luiza Caetano</creatorcontrib><creatorcontrib>Basso, Maik</creatorcontrib><creatorcontrib>Konzen, Andrea Aparecida</creatorcontrib><creatorcontrib>de Freitas, Edison Pignaton</creatorcontrib><title>Reinforcement Learning for Mobile Robotics Exploration: A Survey</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Efficient exploration of unknown environments is a fundamental precondition for modern autonomous mobile robot applications. Aiming to design robust and effective robotic exploration strategies, suitable to complex real-world scenarios, the academic community has increasingly investigated the integration of robotics with reinforcement learning (RL) techniques. This survey provides a comprehensive review of recent research works that use RL to design unknown environment exploration strategies for single and multirobots. The primary purpose of this study is to facilitate future research by compiling and analyzing the current state of works that link these two knowledge domains. This survey summarizes: what are the employed RL algorithms and how they compose the so far proposed mobile robot exploration strategies; how robotic exploration solutions are addressing typical RL problems like the exploration-exploitation dilemma, the curse of dimensionality, reward shaping, and slow learning convergence; and what are the performed experiments and software tools used for learning and testing. Achieved progress is described, and a discussion about remaining limitations and future perspectives is presented.</description><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Cooperative exploration</subject><subject>Electrical engineering</subject><subject>Exploitation</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>mobile robot exploration</subject><subject>Multiple robots</subject><subject>multirobot exploration</subject><subject>multirobot systems (MRSs)</subject><subject>Navigation</subject><subject>Numerical models</subject><subject>Planning</subject><subject>Reinforcement</subject><subject>reinforcement learning (RL)</subject><subject>Robotics</subject><subject>Robots</subject><subject>single robot exploration</subject><subject>Software</subject><subject>Surveys</subject><subject>Unknown environments</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUx4MoOnT_gIIUvHjZzEuapPHkGPMH1AlzB2-h7V6lo2tm0or-92Zu7mAuCS-f932PDyHnQIcAVN_Mp9P0dcgogyEHFsdSHpAeA8kGjCfJ4f6t3k5I3_slDUdSIWN9TE54rKQSEPfI3QyrprSuwBU2bZRi5pqqeY9CKXq2eVVjNLO5bavCR5OvdW1d1la2uY1G0WvnPvH7jByVWe2xv7tPyfx-Mh8_DtKXh6fxKB0UXEA7EGGkUDlkogSWJxwLxbgEShdM5WrBoFRMyqTMsAhFqbnSCQORZzRBJSk_Jdfb2LWzHx361qwqX2BdZw3azhsmtIo1AOiAXv1Dl7ZzTVjOsCQWSuo4EYFiW6pw1nuHpVm7apW5bwPUbAybX8NmY9jsDIemy110l69wsW_58xmAiy1QIeL-W0tgCjj_AcHHfJg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Garaffa, Luiza Caetano</creator><creator>Basso, Maik</creator><creator>Konzen, Andrea Aparecida</creator><creator>de Freitas, Edison Pignaton</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9728-7906</orcidid><orcidid>https://orcid.org/0000-0002-7896-5158</orcidid><orcidid>https://orcid.org/0000-0003-4655-8889</orcidid><orcidid>https://orcid.org/0000-0002-0858-3111</orcidid></search><sort><creationdate>20230801</creationdate><title>Reinforcement Learning for Mobile Robotics Exploration: A Survey</title><author>Garaffa, Luiza Caetano ; Basso, Maik ; Konzen, Andrea Aparecida ; de Freitas, Edison Pignaton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-534757b1a5f12b83ec7236100d27b7d21f72668faec100693798215ba08e7603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Cooperative exploration</topic><topic>Electrical engineering</topic><topic>Exploitation</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>mobile robot exploration</topic><topic>Multiple robots</topic><topic>multirobot exploration</topic><topic>multirobot systems (MRSs)</topic><topic>Navigation</topic><topic>Numerical models</topic><topic>Planning</topic><topic>Reinforcement</topic><topic>reinforcement learning (RL)</topic><topic>Robotics</topic><topic>Robots</topic><topic>single robot exploration</topic><topic>Software</topic><topic>Surveys</topic><topic>Unknown environments</topic><toplevel>online_resources</toplevel><creatorcontrib>Garaffa, Luiza Caetano</creatorcontrib><creatorcontrib>Basso, Maik</creatorcontrib><creatorcontrib>Konzen, Andrea Aparecida</creatorcontrib><creatorcontrib>de Freitas, Edison Pignaton</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garaffa, Luiza Caetano</au><au>Basso, Maik</au><au>Konzen, Andrea Aparecida</au><au>de Freitas, Edison Pignaton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Learning for Mobile Robotics Exploration: A Survey</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>8</issue><spage>3796</spage><epage>3810</epage><pages>3796-3810</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Efficient exploration of unknown environments is a fundamental precondition for modern autonomous mobile robot applications. Aiming to design robust and effective robotic exploration strategies, suitable to complex real-world scenarios, the academic community has increasingly investigated the integration of robotics with reinforcement learning (RL) techniques. This survey provides a comprehensive review of recent research works that use RL to design unknown environment exploration strategies for single and multirobots. The primary purpose of this study is to facilitate future research by compiling and analyzing the current state of works that link these two knowledge domains. This survey summarizes: what are the employed RL algorithms and how they compose the so far proposed mobile robot exploration strategies; how robotic exploration solutions are addressing typical RL problems like the exploration-exploitation dilemma, the curse of dimensionality, reward shaping, and slow learning convergence; and what are the performed experiments and software tools used for learning and testing. Achieved progress is described, and a discussion about remaining limitations and future perspectives is presented.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34767514</pmid><doi>10.1109/TNNLS.2021.3124466</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9728-7906</orcidid><orcidid>https://orcid.org/0000-0002-7896-5158</orcidid><orcidid>https://orcid.org/0000-0003-4655-8889</orcidid><orcidid>https://orcid.org/0000-0002-0858-3111</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-08, Vol.34 (8), p.3796-3810 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2597491119 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Computational modeling Cooperative exploration Electrical engineering Exploitation Learning Mathematical models mobile robot exploration Multiple robots multirobot exploration multirobot systems (MRSs) Navigation Numerical models Planning Reinforcement reinforcement learning (RL) Robotics Robots single robot exploration Software Surveys Unknown environments |
title | Reinforcement Learning for Mobile Robotics Exploration: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Learning%20for%20Mobile%20Robotics%20Exploration:%20A%20Survey&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Garaffa,%20Luiza%20Caetano&rft.date=2023-08-01&rft.volume=34&rft.issue=8&rft.spage=3796&rft.epage=3810&rft.pages=3796-3810&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3124466&rft_dat=%3Cproquest_pubme%3E2845769485%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-534757b1a5f12b83ec7236100d27b7d21f72668faec100693798215ba08e7603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845769485&rft_id=info:pmid/34767514&rft_ieee_id=9612713&rfr_iscdi=true |