Loading…

MRI‐based thalamic volumetry in multiple sclerosis using FSL‐FIRST: Systematic assessment of common error modes

Background and Purpose FSL's FMRIB's Integrated Registration and Segmentation Tool (FSL‐FIRST) is a widely used and well‐validated tool. Automated thalamic segmentation is a common application and an important longitudinal measure for multiple sclerosis (MS). However, FSL‐FIRST's algo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroimaging 2022-03, Vol.32 (2), p.245-252
Main Authors: Lyman, Cassondra, Lee, Dongchan, Ferrari, Hannah, Fuchs, Tom A., Bergsland, Niels, Jakimovski, Dejan, Weinstock‐Guttmann, Bianca, Zivadinov, Robert, Dwyer, Michael G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3537-355bf53a88f8f221c18309f914ffed4703f0c403faea9aba5ce1d89f8108fb4c3
cites cdi_FETCH-LOGICAL-c3537-355bf53a88f8f221c18309f914ffed4703f0c403faea9aba5ce1d89f8108fb4c3
container_end_page 252
container_issue 2
container_start_page 245
container_title Journal of neuroimaging
container_volume 32
creator Lyman, Cassondra
Lee, Dongchan
Ferrari, Hannah
Fuchs, Tom A.
Bergsland, Niels
Jakimovski, Dejan
Weinstock‐Guttmann, Bianca
Zivadinov, Robert
Dwyer, Michael G.
description Background and Purpose FSL's FMRIB's Integrated Registration and Segmentation Tool (FSL‐FIRST) is a widely used and well‐validated tool. Automated thalamic segmentation is a common application and an important longitudinal measure for multiple sclerosis (MS). However, FSL‐FIRST's algorithm is based on shape models derived from non‐MS groups. As such, the present study sought to systematically assess common thalamic segmentation errors made by FSL‐FIRST on MRIs from people with multiple sclerosis (PwMS). Methods FSL‐FIRST was applied to generate thalamic segmentation masks for 890 MR images in PwMS. Images and masks were reviewed systematically to classify and quantify errors, as well as associated anatomical variations and MRI abnormalities. For cases with overt errors (n = 362), thalamic masks were corrected and quantitative volumetric differences were calculated. Results In the entire quantitative volumetric group, the mean volumetric error of FSL‐FIRST was 2.74% (0.360 ml): among only corrected cases, the mean volumetric error was 6.79% (0.894 ml). The average percent volumetric error associated with seven error types, two anatomical variants, and motions artifacts are reported. Additional analyses showed that the presence of motion artifacts or anatomical variations significantly increased the probability of error (χ2 = 18.14, p 
doi_str_mv 10.1111/jon.12947
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597492479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637282293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-355bf53a88f8f221c18309f914ffed4703f0c403faea9aba5ce1d89f8108fb4c3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EoqVw4AWQJS5wSBv_S2xuqGJh0UKlbjlHjjOGrOx48SSgvfEIPCNPgmELByTmMDOH3_dp9A0hj1l9zkpd7NJ0zriR7R1yypTiVaMac7fstWIV51qekAeIu7rmTHJxn5wI2TZto-UpwXfX6x_fvvcWYaDzJxtsHB39ksISYc4HOk40LmEe9wEougA54Yh0wXH6SFfbTZGu1tfbmxd0e8AZop2L2iICYoRppslTl2JME4WcU6YxDYAPyT1vA8Kj23lGPqxe3Vy-qTZXr9eXLzeVE0q0lVCq90pYrb32nDPHtKiNN0x6D4Nsa-FrJ0u3YI3trXLABm28ZrX2vXTijDw7-u5z-rwAzl0c0UEIdoK0YMeVaaXhsjUFffoPuktLnsp1HW9EyzXnRhTq-ZFyJQbM4Lt9HqPNh47V3a9PFNXU_f5EYZ_cOi59hOEv-Sf6Alwcga9jgMP_nbq3V--Plj8BaXiVNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637282293</pqid></control><display><type>article</type><title>MRI‐based thalamic volumetry in multiple sclerosis using FSL‐FIRST: Systematic assessment of common error modes</title><source>Wiley</source><creator>Lyman, Cassondra ; Lee, Dongchan ; Ferrari, Hannah ; Fuchs, Tom A. ; Bergsland, Niels ; Jakimovski, Dejan ; Weinstock‐Guttmann, Bianca ; Zivadinov, Robert ; Dwyer, Michael G.</creator><creatorcontrib>Lyman, Cassondra ; Lee, Dongchan ; Ferrari, Hannah ; Fuchs, Tom A. ; Bergsland, Niels ; Jakimovski, Dejan ; Weinstock‐Guttmann, Bianca ; Zivadinov, Robert ; Dwyer, Michael G.</creatorcontrib><description>Background and Purpose FSL's FMRIB's Integrated Registration and Segmentation Tool (FSL‐FIRST) is a widely used and well‐validated tool. Automated thalamic segmentation is a common application and an important longitudinal measure for multiple sclerosis (MS). However, FSL‐FIRST's algorithm is based on shape models derived from non‐MS groups. As such, the present study sought to systematically assess common thalamic segmentation errors made by FSL‐FIRST on MRIs from people with multiple sclerosis (PwMS). Methods FSL‐FIRST was applied to generate thalamic segmentation masks for 890 MR images in PwMS. Images and masks were reviewed systematically to classify and quantify errors, as well as associated anatomical variations and MRI abnormalities. For cases with overt errors (n = 362), thalamic masks were corrected and quantitative volumetric differences were calculated. Results In the entire quantitative volumetric group, the mean volumetric error of FSL‐FIRST was 2.74% (0.360 ml): among only corrected cases, the mean volumetric error was 6.79% (0.894 ml). The average percent volumetric error associated with seven error types, two anatomical variants, and motions artifacts are reported. Additional analyses showed that the presence of motion artifacts or anatomical variations significantly increased the probability of error (χ2 = 18.14, p &lt; .01 and χ2 = 64.89, p &lt; .001, respectively). Finally, thalamus volume error was negatively associated with degree of atrophy, such that smaller thalami were systematically overestimated (r = –.28, p &lt; .001). Conclusions In PwMS, FSL‐FIRST thalamic segmentation miscalculates thalamic volumetry in a predictable fashion, and may be biased to overestimate highly atrophic thalami. As such, it is recommended that segmentations be reviewed and corrected manually when appropriate for specific studies.</description><identifier>ISSN: 1051-2284</identifier><identifier>EISSN: 1552-6569</identifier><identifier>DOI: 10.1111/jon.12947</identifier><identifier>PMID: 34767684</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Abnormalities ; Algorithms ; Atrophy ; Chi-square test ; Error correction ; errors ; Image classification ; Image processing ; Image segmentation ; Magnetic resonance imaging ; Masks ; Multiple sclerosis ; Neuroimaging ; Reviews ; segmentation ; Thalamus ; volumetry</subject><ispartof>Journal of neuroimaging, 2022-03, Vol.32 (2), p.245-252</ispartof><rights>2021 American Society of Neuroimaging</rights><rights>2021 American Society of Neuroimaging.</rights><rights>2022 American Society of Neuroimaging</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-355bf53a88f8f221c18309f914ffed4703f0c403faea9aba5ce1d89f8108fb4c3</citedby><cites>FETCH-LOGICAL-c3537-355bf53a88f8f221c18309f914ffed4703f0c403faea9aba5ce1d89f8108fb4c3</cites><orcidid>0000-0001-7114-4958 ; 0000-0002-7792-0433 ; 0000-0002-7799-1485 ; 0000-0003-4684-4658 ; 0000-0003-0329-3438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34767684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyman, Cassondra</creatorcontrib><creatorcontrib>Lee, Dongchan</creatorcontrib><creatorcontrib>Ferrari, Hannah</creatorcontrib><creatorcontrib>Fuchs, Tom A.</creatorcontrib><creatorcontrib>Bergsland, Niels</creatorcontrib><creatorcontrib>Jakimovski, Dejan</creatorcontrib><creatorcontrib>Weinstock‐Guttmann, Bianca</creatorcontrib><creatorcontrib>Zivadinov, Robert</creatorcontrib><creatorcontrib>Dwyer, Michael G.</creatorcontrib><title>MRI‐based thalamic volumetry in multiple sclerosis using FSL‐FIRST: Systematic assessment of common error modes</title><title>Journal of neuroimaging</title><addtitle>J Neuroimaging</addtitle><description>Background and Purpose FSL's FMRIB's Integrated Registration and Segmentation Tool (FSL‐FIRST) is a widely used and well‐validated tool. Automated thalamic segmentation is a common application and an important longitudinal measure for multiple sclerosis (MS). However, FSL‐FIRST's algorithm is based on shape models derived from non‐MS groups. As such, the present study sought to systematically assess common thalamic segmentation errors made by FSL‐FIRST on MRIs from people with multiple sclerosis (PwMS). Methods FSL‐FIRST was applied to generate thalamic segmentation masks for 890 MR images in PwMS. Images and masks were reviewed systematically to classify and quantify errors, as well as associated anatomical variations and MRI abnormalities. For cases with overt errors (n = 362), thalamic masks were corrected and quantitative volumetric differences were calculated. Results In the entire quantitative volumetric group, the mean volumetric error of FSL‐FIRST was 2.74% (0.360 ml): among only corrected cases, the mean volumetric error was 6.79% (0.894 ml). The average percent volumetric error associated with seven error types, two anatomical variants, and motions artifacts are reported. Additional analyses showed that the presence of motion artifacts or anatomical variations significantly increased the probability of error (χ2 = 18.14, p &lt; .01 and χ2 = 64.89, p &lt; .001, respectively). Finally, thalamus volume error was negatively associated with degree of atrophy, such that smaller thalami were systematically overestimated (r = –.28, p &lt; .001). Conclusions In PwMS, FSL‐FIRST thalamic segmentation miscalculates thalamic volumetry in a predictable fashion, and may be biased to overestimate highly atrophic thalami. As such, it is recommended that segmentations be reviewed and corrected manually when appropriate for specific studies.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Atrophy</subject><subject>Chi-square test</subject><subject>Error correction</subject><subject>errors</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Masks</subject><subject>Multiple sclerosis</subject><subject>Neuroimaging</subject><subject>Reviews</subject><subject>segmentation</subject><subject>Thalamus</subject><subject>volumetry</subject><issn>1051-2284</issn><issn>1552-6569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi0EoqVw4AWQJS5wSBv_S2xuqGJh0UKlbjlHjjOGrOx48SSgvfEIPCNPgmELByTmMDOH3_dp9A0hj1l9zkpd7NJ0zriR7R1yypTiVaMac7fstWIV51qekAeIu7rmTHJxn5wI2TZto-UpwXfX6x_fvvcWYaDzJxtsHB39ksISYc4HOk40LmEe9wEougA54Yh0wXH6SFfbTZGu1tfbmxd0e8AZop2L2iICYoRppslTl2JME4WcU6YxDYAPyT1vA8Kj23lGPqxe3Vy-qTZXr9eXLzeVE0q0lVCq90pYrb32nDPHtKiNN0x6D4Nsa-FrJ0u3YI3trXLABm28ZrX2vXTijDw7-u5z-rwAzl0c0UEIdoK0YMeVaaXhsjUFffoPuktLnsp1HW9EyzXnRhTq-ZFyJQbM4Lt9HqPNh47V3a9PFNXU_f5EYZ_cOi59hOEv-Sf6Alwcga9jgMP_nbq3V--Plj8BaXiVNg</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Lyman, Cassondra</creator><creator>Lee, Dongchan</creator><creator>Ferrari, Hannah</creator><creator>Fuchs, Tom A.</creator><creator>Bergsland, Niels</creator><creator>Jakimovski, Dejan</creator><creator>Weinstock‐Guttmann, Bianca</creator><creator>Zivadinov, Robert</creator><creator>Dwyer, Michael G.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7114-4958</orcidid><orcidid>https://orcid.org/0000-0002-7792-0433</orcidid><orcidid>https://orcid.org/0000-0002-7799-1485</orcidid><orcidid>https://orcid.org/0000-0003-4684-4658</orcidid><orcidid>https://orcid.org/0000-0003-0329-3438</orcidid></search><sort><creationdate>202203</creationdate><title>MRI‐based thalamic volumetry in multiple sclerosis using FSL‐FIRST: Systematic assessment of common error modes</title><author>Lyman, Cassondra ; Lee, Dongchan ; Ferrari, Hannah ; Fuchs, Tom A. ; Bergsland, Niels ; Jakimovski, Dejan ; Weinstock‐Guttmann, Bianca ; Zivadinov, Robert ; Dwyer, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-355bf53a88f8f221c18309f914ffed4703f0c403faea9aba5ce1d89f8108fb4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Atrophy</topic><topic>Chi-square test</topic><topic>Error correction</topic><topic>errors</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Masks</topic><topic>Multiple sclerosis</topic><topic>Neuroimaging</topic><topic>Reviews</topic><topic>segmentation</topic><topic>Thalamus</topic><topic>volumetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyman, Cassondra</creatorcontrib><creatorcontrib>Lee, Dongchan</creatorcontrib><creatorcontrib>Ferrari, Hannah</creatorcontrib><creatorcontrib>Fuchs, Tom A.</creatorcontrib><creatorcontrib>Bergsland, Niels</creatorcontrib><creatorcontrib>Jakimovski, Dejan</creatorcontrib><creatorcontrib>Weinstock‐Guttmann, Bianca</creatorcontrib><creatorcontrib>Zivadinov, Robert</creatorcontrib><creatorcontrib>Dwyer, Michael G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroimaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyman, Cassondra</au><au>Lee, Dongchan</au><au>Ferrari, Hannah</au><au>Fuchs, Tom A.</au><au>Bergsland, Niels</au><au>Jakimovski, Dejan</au><au>Weinstock‐Guttmann, Bianca</au><au>Zivadinov, Robert</au><au>Dwyer, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI‐based thalamic volumetry in multiple sclerosis using FSL‐FIRST: Systematic assessment of common error modes</atitle><jtitle>Journal of neuroimaging</jtitle><addtitle>J Neuroimaging</addtitle><date>2022-03</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>245</spage><epage>252</epage><pages>245-252</pages><issn>1051-2284</issn><eissn>1552-6569</eissn><abstract>Background and Purpose FSL's FMRIB's Integrated Registration and Segmentation Tool (FSL‐FIRST) is a widely used and well‐validated tool. Automated thalamic segmentation is a common application and an important longitudinal measure for multiple sclerosis (MS). However, FSL‐FIRST's algorithm is based on shape models derived from non‐MS groups. As such, the present study sought to systematically assess common thalamic segmentation errors made by FSL‐FIRST on MRIs from people with multiple sclerosis (PwMS). Methods FSL‐FIRST was applied to generate thalamic segmentation masks for 890 MR images in PwMS. Images and masks were reviewed systematically to classify and quantify errors, as well as associated anatomical variations and MRI abnormalities. For cases with overt errors (n = 362), thalamic masks were corrected and quantitative volumetric differences were calculated. Results In the entire quantitative volumetric group, the mean volumetric error of FSL‐FIRST was 2.74% (0.360 ml): among only corrected cases, the mean volumetric error was 6.79% (0.894 ml). The average percent volumetric error associated with seven error types, two anatomical variants, and motions artifacts are reported. Additional analyses showed that the presence of motion artifacts or anatomical variations significantly increased the probability of error (χ2 = 18.14, p &lt; .01 and χ2 = 64.89, p &lt; .001, respectively). Finally, thalamus volume error was negatively associated with degree of atrophy, such that smaller thalami were systematically overestimated (r = –.28, p &lt; .001). Conclusions In PwMS, FSL‐FIRST thalamic segmentation miscalculates thalamic volumetry in a predictable fashion, and may be biased to overestimate highly atrophic thalami. As such, it is recommended that segmentations be reviewed and corrected manually when appropriate for specific studies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34767684</pmid><doi>10.1111/jon.12947</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7114-4958</orcidid><orcidid>https://orcid.org/0000-0002-7792-0433</orcidid><orcidid>https://orcid.org/0000-0002-7799-1485</orcidid><orcidid>https://orcid.org/0000-0003-4684-4658</orcidid><orcidid>https://orcid.org/0000-0003-0329-3438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-2284
ispartof Journal of neuroimaging, 2022-03, Vol.32 (2), p.245-252
issn 1051-2284
1552-6569
language eng
recordid cdi_proquest_miscellaneous_2597492479
source Wiley
subjects Abnormalities
Algorithms
Atrophy
Chi-square test
Error correction
errors
Image classification
Image processing
Image segmentation
Magnetic resonance imaging
Masks
Multiple sclerosis
Neuroimaging
Reviews
segmentation
Thalamus
volumetry
title MRI‐based thalamic volumetry in multiple sclerosis using FSL‐FIRST: Systematic assessment of common error modes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%E2%80%90based%20thalamic%20volumetry%20in%20multiple%20sclerosis%20using%20FSL%E2%80%90FIRST:%20Systematic%20assessment%20of%20common%20error%20modes&rft.jtitle=Journal%20of%20neuroimaging&rft.au=Lyman,%20Cassondra&rft.date=2022-03&rft.volume=32&rft.issue=2&rft.spage=245&rft.epage=252&rft.pages=245-252&rft.issn=1051-2284&rft.eissn=1552-6569&rft_id=info:doi/10.1111/jon.12947&rft_dat=%3Cproquest_cross%3E2637282293%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3537-355bf53a88f8f221c18309f914ffed4703f0c403faea9aba5ce1d89f8108fb4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2637282293&rft_id=info:pmid/34767684&rfr_iscdi=true