Loading…
Structure Elucidation Using Gas Chromatography−Infrared Spectroscopy/Mass Spectrometry Supported by Quantum Chemical IR Spectrum Simulations
An improved strategy for compound identification incorporating gas chromatography hyphenated with Fourier transform infrared spectroscopy and mass spectroscopy (GC–FTIR/MS) is reported. (Over)reliance on MS may lead either to ambiguous identity or to incorrect identification of a compound. However,...
Saved in:
Published in: | Analytical chemistry (Washington) 2021-11, Vol.93 (46), p.15508-15516 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An improved strategy for compound identification incorporating gas chromatography hyphenated with Fourier transform infrared spectroscopy and mass spectroscopy (GC–FTIR/MS) is reported. (Over)reliance on MS may lead either to ambiguous identity or to incorrect identification of a compound. However, the MS result is useful to provide a cohort of possible compounds. The IR result for each tentative compound match was then simulated using molecular modeling, to provide functional group and isomer differentiation information, and then compared with the experimental FTIR result, offering identification based on both MS and IR. Several basis sets were evaluated for IR simulations; Def2-TZVPP was a suitable basis set and correlated well with experimental data. The approach was applied to industrial applications, confirming the isomers of 2,3-bis(thiosulfanyl)-but-2-enedinitrile, bromination products of 1-bromo-2,3-dimethylbenzene, and autoxidative degradation of phenyl-di-tert-butylphosphine. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.1c03662 |