Loading…
Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration
Image restoration is formulated as the problem of minimizing a non-convex cost function E( f, l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter T, thus obtaini...
Saved in:
Published in: | Pattern recognition letters 1995, Vol.16 (10), p.1011-1022 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813 |
container_end_page | 1022 |
container_issue | 10 |
container_start_page | 1011 |
container_title | Pattern recognition letters |
container_volume | 16 |
creator | Bedini, L. Gerace, I. Tonazzini, A. |
description | Image restoration is formulated as the problem of minimizing a non-convex cost function
E(
f,
l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter
T, thus obtaining a sequence of functions
F
T
(
f) converging to a function
F(
f) that implicitly refers to the line process. In the case of a non-interacting line process, function
F(
f) coincides with the one derived for the weak membrane problem. The minimum of
F(
f) is computed through a GNC-type algorithm which minimizes in sequence the various
F
T
(
f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines. |
doi_str_mv | 10.1016/0167-8655(95)00055-L |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25975016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016786559500055L</els_id><sourcerecordid>25975016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxdZiOgimkzzaDaCDL6g4MLZhzS9LZFOW5OO6L83nRlm6SKE3Hzn3HsPQpeM3jHK5H06iuRSiBstbimlQpDiCM1YrhZEZZwfo9kBOUVnMX4mSGY6nyH74Zt17yvbYjsMof_xazv6vou47gOO0NbEdyME60bfNbj1HeCEOYgRIvYdhqoBMgSIEL4nIukbwOk99mHrdI5OattGuNjfc7R6flotX0nx_vK2fCyIyyQfCc9rWcoylyWUTAkrgOe0KoFVSnDulNbSapCVSL8l1xQo1VTmkrlUzVk2R9c72zTd1ya1N2sfHbSt7aDfRLMQWomUQgL5DnShjzFAbYaQhg6_hlEzxWmmrMyUldHCbOM0RZJd7f1tdLatg-2cjwdtJvWCCZWwhx0GadVvD8FE56FzUPkAbjRV7__v8wcec4rO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25975016</pqid></control><display><type>article</type><title>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</title><source>Elsevier</source><creator>Bedini, L. ; Gerace, I. ; Tonazzini, A.</creator><creatorcontrib>Bedini, L. ; Gerace, I. ; Tonazzini, A.</creatorcontrib><description>Image restoration is formulated as the problem of minimizing a non-convex cost function
E(
f,
l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter
T, thus obtaining a sequence of functions
F
T
(
f) converging to a function
F(
f) that implicitly refers to the line process. In the case of a non-interacting line process, function
F(
f) coincides with the one derived for the weak membrane problem. The minimum of
F(
f) is computed through a GNC-type algorithm which minimizes in sequence the various
F
T
(
f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/0167-8655(95)00055-L</identifier><identifier>CODEN: PRLEDG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Image restoration ; Pattern recognition. Digital image processing. Computational geometry ; Regularization ; Self-interacting discontinuities</subject><ispartof>Pattern recognition letters, 1995, Vol.16 (10), p.1011-1022</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</citedby><cites>FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3692157$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bedini, L.</creatorcontrib><creatorcontrib>Gerace, I.</creatorcontrib><creatorcontrib>Tonazzini, A.</creatorcontrib><title>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</title><title>Pattern recognition letters</title><description>Image restoration is formulated as the problem of minimizing a non-convex cost function
E(
f,
l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter
T, thus obtaining a sequence of functions
F
T
(
f) converging to a function
F(
f) that implicitly refers to the line process. In the case of a non-interacting line process, function
F(
f) coincides with the one derived for the weak membrane problem. The minimum of
F(
f) is computed through a GNC-type algorithm which minimizes in sequence the various
F
T
(
f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image restoration</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Regularization</subject><subject>Self-interacting discontinuities</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxdZiOgimkzzaDaCDL6g4MLZhzS9LZFOW5OO6L83nRlm6SKE3Hzn3HsPQpeM3jHK5H06iuRSiBstbimlQpDiCM1YrhZEZZwfo9kBOUVnMX4mSGY6nyH74Zt17yvbYjsMof_xazv6vou47gOO0NbEdyME60bfNbj1HeCEOYgRIvYdhqoBMgSIEL4nIukbwOk99mHrdI5OattGuNjfc7R6flotX0nx_vK2fCyIyyQfCc9rWcoylyWUTAkrgOe0KoFVSnDulNbSapCVSL8l1xQo1VTmkrlUzVk2R9c72zTd1ya1N2sfHbSt7aDfRLMQWomUQgL5DnShjzFAbYaQhg6_hlEzxWmmrMyUldHCbOM0RZJd7f1tdLatg-2cjwdtJvWCCZWwhx0GadVvD8FE56FzUPkAbjRV7__v8wcec4rO</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Bedini, L.</creator><creator>Gerace, I.</creator><creator>Tonazzini, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</title><author>Bedini, L. ; Gerace, I. ; Tonazzini, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image restoration</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Regularization</topic><topic>Self-interacting discontinuities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedini, L.</creatorcontrib><creatorcontrib>Gerace, I.</creatorcontrib><creatorcontrib>Tonazzini, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedini, L.</au><au>Gerace, I.</au><au>Tonazzini, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</atitle><jtitle>Pattern recognition letters</jtitle><date>1995</date><risdate>1995</risdate><volume>16</volume><issue>10</issue><spage>1011</spage><epage>1022</epage><pages>1011-1022</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><coden>PRLEDG</coden><abstract>Image restoration is formulated as the problem of minimizing a non-convex cost function
E(
f,
l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter
T, thus obtaining a sequence of functions
F
T
(
f) converging to a function
F(
f) that implicitly refers to the line process. In the case of a non-interacting line process, function
F(
f) coincides with the one derived for the weak membrane problem. The minimum of
F(
f) is computed through a GNC-type algorithm which minimizes in sequence the various
F
T
(
f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-8655(95)00055-L</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 1995, Vol.16 (10), p.1011-1022 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_miscellaneous_25975016 |
source | Elsevier |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Image restoration Pattern recognition. Digital image processing. Computational geometry Regularization Self-interacting discontinuities |
title | Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sigmoidal%20approximations%20for%20self-interacting%20line%20processes%20in%20edge-preserving%20image%20restoration&rft.jtitle=Pattern%20recognition%20letters&rft.au=Bedini,%20L.&rft.date=1995&rft.volume=16&rft.issue=10&rft.spage=1011&rft.epage=1022&rft.pages=1011-1022&rft.issn=0167-8655&rft.eissn=1872-7344&rft.coden=PRLEDG&rft_id=info:doi/10.1016/0167-8655(95)00055-L&rft_dat=%3Cproquest_cross%3E25975016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25975016&rft_id=info:pmid/&rfr_iscdi=true |