Loading…

Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration

Image restoration is formulated as the problem of minimizing a non-convex cost function E( f, l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter T, thus obtaini...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters 1995, Vol.16 (10), p.1011-1022
Main Authors: Bedini, L., Gerace, I., Tonazzini, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813
cites cdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813
container_end_page 1022
container_issue 10
container_start_page 1011
container_title Pattern recognition letters
container_volume 16
creator Bedini, L.
Gerace, I.
Tonazzini, A.
description Image restoration is formulated as the problem of minimizing a non-convex cost function E( f, l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter T, thus obtaining a sequence of functions F T ( f) converging to a function F( f) that implicitly refers to the line process. In the case of a non-interacting line process, function F( f) coincides with the one derived for the weak membrane problem. The minimum of F( f) is computed through a GNC-type algorithm which minimizes in sequence the various F T ( f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines.
doi_str_mv 10.1016/0167-8655(95)00055-L
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25975016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016786559500055L</els_id><sourcerecordid>25975016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxdZiOgimkzzaDaCDL6g4MLZhzS9LZFOW5OO6L83nRlm6SKE3Hzn3HsPQpeM3jHK5H06iuRSiBstbimlQpDiCM1YrhZEZZwfo9kBOUVnMX4mSGY6nyH74Zt17yvbYjsMof_xazv6vou47gOO0NbEdyME60bfNbj1HeCEOYgRIvYdhqoBMgSIEL4nIukbwOk99mHrdI5OattGuNjfc7R6flotX0nx_vK2fCyIyyQfCc9rWcoylyWUTAkrgOe0KoFVSnDulNbSapCVSL8l1xQo1VTmkrlUzVk2R9c72zTd1ya1N2sfHbSt7aDfRLMQWomUQgL5DnShjzFAbYaQhg6_hlEzxWmmrMyUldHCbOM0RZJd7f1tdLatg-2cjwdtJvWCCZWwhx0GadVvD8FE56FzUPkAbjRV7__v8wcec4rO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25975016</pqid></control><display><type>article</type><title>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</title><source>Elsevier</source><creator>Bedini, L. ; Gerace, I. ; Tonazzini, A.</creator><creatorcontrib>Bedini, L. ; Gerace, I. ; Tonazzini, A.</creatorcontrib><description>Image restoration is formulated as the problem of minimizing a non-convex cost function E( f, l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter T, thus obtaining a sequence of functions F T ( f) converging to a function F( f) that implicitly refers to the line process. In the case of a non-interacting line process, function F( f) coincides with the one derived for the weak membrane problem. The minimum of F( f) is computed through a GNC-type algorithm which minimizes in sequence the various F T ( f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/0167-8655(95)00055-L</identifier><identifier>CODEN: PRLEDG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Image restoration ; Pattern recognition. Digital image processing. Computational geometry ; Regularization ; Self-interacting discontinuities</subject><ispartof>Pattern recognition letters, 1995, Vol.16 (10), p.1011-1022</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</citedby><cites>FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3692157$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bedini, L.</creatorcontrib><creatorcontrib>Gerace, I.</creatorcontrib><creatorcontrib>Tonazzini, A.</creatorcontrib><title>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</title><title>Pattern recognition letters</title><description>Image restoration is formulated as the problem of minimizing a non-convex cost function E( f, l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter T, thus obtaining a sequence of functions F T ( f) converging to a function F( f) that implicitly refers to the line process. In the case of a non-interacting line process, function F( f) coincides with the one derived for the weak membrane problem. The minimum of F( f) is computed through a GNC-type algorithm which minimizes in sequence the various F T ( f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Image restoration</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Regularization</subject><subject>Self-interacting discontinuities</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxdZiOgimkzzaDaCDL6g4MLZhzS9LZFOW5OO6L83nRlm6SKE3Hzn3HsPQpeM3jHK5H06iuRSiBstbimlQpDiCM1YrhZEZZwfo9kBOUVnMX4mSGY6nyH74Zt17yvbYjsMof_xazv6vou47gOO0NbEdyME60bfNbj1HeCEOYgRIvYdhqoBMgSIEL4nIukbwOk99mHrdI5OattGuNjfc7R6flotX0nx_vK2fCyIyyQfCc9rWcoylyWUTAkrgOe0KoFVSnDulNbSapCVSL8l1xQo1VTmkrlUzVk2R9c72zTd1ya1N2sfHbSt7aDfRLMQWomUQgL5DnShjzFAbYaQhg6_hlEzxWmmrMyUldHCbOM0RZJd7f1tdLatg-2cjwdtJvWCCZWwhx0GadVvD8FE56FzUPkAbjRV7__v8wcec4rO</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>Bedini, L.</creator><creator>Gerace, I.</creator><creator>Tonazzini, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1995</creationdate><title>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</title><author>Bedini, L. ; Gerace, I. ; Tonazzini, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Image restoration</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Regularization</topic><topic>Self-interacting discontinuities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedini, L.</creatorcontrib><creatorcontrib>Gerace, I.</creatorcontrib><creatorcontrib>Tonazzini, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedini, L.</au><au>Gerace, I.</au><au>Tonazzini, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration</atitle><jtitle>Pattern recognition letters</jtitle><date>1995</date><risdate>1995</risdate><volume>16</volume><issue>10</issue><spage>1011</spage><epage>1022</epage><pages>1011-1022</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><coden>PRLEDG</coden><abstract>Image restoration is formulated as the problem of minimizing a non-convex cost function E( f, l) in which a binary self-interacting line process is introduced. Each line element is then approximated by a sigmoidal function of the local intensity gradient, which depends on a parameter T, thus obtaining a sequence of functions F T ( f) converging to a function F( f) that implicitly refers to the line process. In the case of a non-interacting line process, function F( f) coincides with the one derived for the weak membrane problem. The minimum of F( f) is computed through a GNC-type algorithm which minimizes in sequence the various F T ( f)'s using gradient descent techniques. When generalized to the case of self-interacting line elements, the method is flexible in introducing any kind of constraint on the configurations of the discontinuity field. The results of simulations highlight that the method improves the quality of the reconstruction when constraints on the line process are introduced, without any increase in the computational costs with respect to the case where there are no self-interactions between lines.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0167-8655(95)00055-L</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 1995, Vol.16 (10), p.1011-1022
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_miscellaneous_25975016
source Elsevier
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Image restoration
Pattern recognition. Digital image processing. Computational geometry
Regularization
Self-interacting discontinuities
title Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sigmoidal%20approximations%20for%20self-interacting%20line%20processes%20in%20edge-preserving%20image%20restoration&rft.jtitle=Pattern%20recognition%20letters&rft.au=Bedini,%20L.&rft.date=1995&rft.volume=16&rft.issue=10&rft.spage=1011&rft.epage=1022&rft.pages=1011-1022&rft.issn=0167-8655&rft.eissn=1872-7344&rft.coden=PRLEDG&rft_id=info:doi/10.1016/0167-8655(95)00055-L&rft_dat=%3Cproquest_cross%3E25975016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-48f6b6b86beb175a5e480dbe1d7544c7996a9e6d5b17b490e00906861c9e6813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25975016&rft_id=info:pmid/&rfr_iscdi=true