Loading…
Interfacial engineering coupling with tailored oxygen vacancies in Co2Mn2O4 spinel hollow nanofiber for catalytic phenol removal
Herein, one-dimensional Co2Mn2O4 (CMO) hollow nanofibers with a general spinel structure were constructed by electrospinning and tunning thermal-driven procedures. The resultant catalyst was endowed with appreciable active interfacial engineering effect, which revealed improved peroxymonosulfate (PM...
Saved in:
Published in: | Journal of hazardous materials 2022-02, Vol.424, p.127647-127647, Article 127647 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Herein, one-dimensional Co2Mn2O4 (CMO) hollow nanofibers with a general spinel structure were constructed by electrospinning and tunning thermal-driven procedures. The resultant catalyst was endowed with appreciable active interfacial engineering effect, which revealed improved peroxymonosulfate (PMS) activation efficiency in catalytic phenol degradation with nearly 12.9 folds increment in reaction rate constant compared to the hydrothermally synthesized counterpart. Besides, tailored oxygen-vacancy sites including chemical environment and contents in the bimetallic spinel were rationally validated compared to the monometal spinel counterparts. The improved catalytic phenol degradation by reactive-oxidative-species (ROS) from PMS was well correlated with the more active Co(II) and Mn(II) species, reactive active oxygen-vacancy and the interfacial engineering effect in the CMO catalyst. These correlations were comprehensively demonstrated by various characterization techniques, catalytic results, and Density-Functional-Theoretical (DFT) calculations of the adsorption and activation of PMS. Besides, the results revealed that the specific content of cobalt species in the structural unit of the Co2Mn2O4 spinel resulting from the optimized thermal treatment could further improve the catalytic activity by the intermetallic synergy along with the beneficial electron transfer cycles. This work provides a practical understanding of the improvement of interfacial systems in catalysis efficiency and environmental remediation.
[Display omitted]
•One dimensional CoxMn2O4 hollow nanofibers were constructed by electrospinning approach.•The resulted catalyst embraces the interfacial engineering effect and tailored oxygen vacancy.•The catalyst affords excellent catalytic phenol degradation efficiency in high phenol solution.•The tailored oxygen vacancy sites afford improved PMS activation ability. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2021.127647 |