Loading…
Design of a multi-epitope protein vaccine against herpes simplex virus, human papillomavirus and Chlamydia trachomatis as the main causes of sexually transmitted diseases
Sexually transmitted diseases (STDs) have a profound effect on reproductivity and sexual health worldwide. According to world health organization (WHO) 375 million new case of STD, including chlamydia trachomatis (chlamydia), Neisseria gonorrhoeae, HSV, HPV has been reported in 2016. More than 30 di...
Saved in:
Published in: | Infection, genetics and evolution genetics and evolution, 2021-12, Vol.96, p.105136-105136, Article 105136 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sexually transmitted diseases (STDs) have a profound effect on reproductivity and sexual health worldwide. According to world health organization (WHO) 375 million new case of STD, including chlamydia trachomatis (chlamydia), Neisseria gonorrhoeae, HSV, HPV has been reported in 2016. More than 30 diverse pathogenesis have identified to be transmitted through sexual intercourse. Of these, viral infections (hepatitis B, herpes simplex virus (HSV or herpes), HIV, and human papillomavirus (HPV) are incurable. However, symptoms caused by the incurable viral infections can be alleviated through treatment. Antimicrobial resistance (AMR) of sexually transmitted infections (STIs) to antibiotics has increased recent years, in this regard, vaccination is proposed as an important strategy for prevention or treatment of STDs. Vaccine against HPV 16 and 18 suggests a new approach for controlling STDs but until now, there is no prophylactic or therapeutic vaccine have been approved for HSV-2 and Chlamydia trachomatis (CT); in this reason, developing an efficient vaccine is inevitable. Recently, different combinatorial forms of subunit vaccines against two or three type of bacteria have been designed.
In this study, to design a combinatorial vaccine against HSV, CT, and HPV, the E7 and L2 from HPV, glycoprotein D from HSV-2 and ompA from CT were selected as final antigens. Afterward, the immunodominant helper T lymphocytes (HTLs) and cytolytic T lymphocytes (CTLs) epitopes were chosen from aforesaid antigens. P30 (tetanus toxoid epitope) as universal T-helper were also added to the vaccine. Moreover, flagellin D1/D0 as TLR5 agonist and the RS09 as a TLR4 ligand were incorporated to N and C-terminals of peptide vaccine, respectively. Finally, all selected parts were fused together by appropriate linkers to enhance vaccine efficiency. The physicochemical, structural, and immunological properties of the designed vaccine protein were assessed. To achieve the best 3D model of the protein vaccine, modeling, refinement, and validation of modeled structures were also done. Docking evaluation demonstrated suitable interaction between the vaccine and TLR5. Moreover, molecular dynamics (MD) studies showed an appropriate and stable structure of protein and TLR5. Based on immunoinformatic analysis, our vaccine candidate could potentially incite humoral and cellular immunities, which are critical for protection against HPV, HSV-2, and chlamydia trachomatis. It should be noted that, exp |
---|---|
ISSN: | 1567-1348 1567-7257 |
DOI: | 10.1016/j.meegid.2021.105136 |