Loading…

Dense Packed Drivable Optrode Array for Precise Optical Stimulation and Neural Recording in Multiple-Brain Regions

The input–output function of neural networks is complicated due to the huge number of neurons and synapses, and some high-density implantable electrophysiology recording tools with a plane structure have been developed for neural circuit studies in recent years. However, traditional plane probes are...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors 2021-11, Vol.6 (11), p.4126-4135
Main Authors: Wang, Longchun, Ge, Chaofan, Wang, Fang, Guo, Zhejun, Hong, Wen, Jiang, Chunpeng, Ji, Bowen, Wang, Minghao, Li, Chengyu, Sun, Bomin, Liu, Jingquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The input–output function of neural networks is complicated due to the huge number of neurons and synapses, and some high-density implantable electrophysiology recording tools with a plane structure have been developed for neural circuit studies in recent years. However, traditional plane probes are limited by the record-only function and inability to monitor multiple-brain regions simultaneously, and the complete cognition of neural networks still has a long way away. Herein, we develop a three-dimensional (3D) high-density drivable optrode array for multiple-brain recording and precise optical stimulation simultaneously. The optrode array contains four-layer probes with 1024 microelectrodes and two thinned optical fibers assembled into a 3D-printed drivable module. The recording performance of microelectrodes is optimized by electrochemical modification, and precise implantation depth control of drivable optrodes is verified in agar. Moreover, in vivo experiments indicate neural activities from CA1 and dentate gyrus regions are monitored, and a tracking of the neuron firing for 2 weeks is achieved. The suppression of neuron firing by blue light has been realized through high-density optrodes during optogenetics experiments. With the feature of large-scale recording, optoelectronic integration, and 3D assembly, the high-density drivable optrode array possesses an important value in the research of brain diseases and neural networks.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.1c01650