Loading…

Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes

Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds a...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2021-11, Vol.93 (47), p.15659-15666
Main Authors: Tang, Yuchen, Chen, Xuqi, Zhang, Shaohua, Smith, Zachary J, Gao, Tingjuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a376t-b70de549fd586c0e0ad81a351a5b36a7269d3bb5869fe3a40b515ee242639b3b3
cites cdi_FETCH-LOGICAL-a376t-b70de549fd586c0e0ad81a351a5b36a7269d3bb5869fe3a40b515ee242639b3b3
container_end_page 15666
container_issue 47
container_start_page 15659
container_title Analytical chemistry (Washington)
container_volume 93
creator Tang, Yuchen
Chen, Xuqi
Zhang, Shaohua
Smith, Zachary J
Gao, Tingjuan
description Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds are formed. Based on the changes of the vibrational modes for the corresponding bonds, fingerprint analysis of multiple Raman bands may allow for the in situ visualization of proton distribution in live cells. However, Raman scattering faces the well-known challenge of low sensitivity. To perform the vibrational fingerprint analysis of Raman scattering by overcoming this challenge, we developed an azo-based resonance Raman pH probe. It was an azobenzene-featured small molecule responsive to protons with the inherent Raman signal ∼104-fold more intense than that of the conventional alkyne-type Raman reporter 5-ethynyl-2′-deoxyuridine. Through the substitution of the electron-donating and -withdrawing entities to the azobenzene group, the effect of resonance Raman scattering and fluorescence quenching was obtained. This effect resulted in a significant Raman enhancement factor of ∼103 compared to the counterpart molecules without the molecular design. Based on the enhanced Raman sensitivity of the azo-based resonance Raman pH probe, the identification of vibrational fingerprint changes at the azo group was achieved during the protonation/deprotonation reactions, and the vibrational fingerprint analysis resolved a pH difference of less than 0.2 unit. The method enabled sensitive hyperspectral cell imaging that clearly visualized the change of proton distribution in autophagic cells.
doi_str_mv 10.1021/acs.analchem.1c03277
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2597817734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607710357</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-b70de549fd586c0e0ad81a351a5b36a7269d3bb5869fe3a40b515ee242639b3b3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EokvhDRCyxIVLlrEd28lxtaVQaSVQ-XONxslkcZXExU4Oywvw2ni12x44cBpp5vd9M5qPsdcC1gKkeI9tWuOEQ_uTxrVoQUlrn7CV0BIKU1XyKVsBgCqkBbhgL1K6AxAChHnOLlRpbW1kuWJ_fngXcfYhO_FrP-0p3kc_zXyTG4fkEw89x4lvfofCYaKO31LK8NQSv8UxT762OM-UNXv-JQZHvA-R34y4P3fmMPErn-bo3XLcw_3EtzQMy4CR7w4ppDBSesme9TgkenWul-z79Ydv20_F7vPHm-1mV6CyZi6chY50WfedrkwLBNhVApUWqJ0yaKWpO-VcHtY9KSzBaaGJZCmNqp1y6pK9O_nex_BroTQ3o09tPgcnCktqpK5tJaxVZUbf_oPehSXmt2TKgLUClLaZKk9UG0NKkfom_2_EeGgENMegmhxU8xBUcw4qy96czRc3UvcoekgmA3ACjvLHxf_1_AvsvqPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607710357</pqid></control><display><type>article</type><title>Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tang, Yuchen ; Chen, Xuqi ; Zhang, Shaohua ; Smith, Zachary J ; Gao, Tingjuan</creator><creatorcontrib>Tang, Yuchen ; Chen, Xuqi ; Zhang, Shaohua ; Smith, Zachary J ; Gao, Tingjuan</creatorcontrib><description>Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds are formed. Based on the changes of the vibrational modes for the corresponding bonds, fingerprint analysis of multiple Raman bands may allow for the in situ visualization of proton distribution in live cells. However, Raman scattering faces the well-known challenge of low sensitivity. To perform the vibrational fingerprint analysis of Raman scattering by overcoming this challenge, we developed an azo-based resonance Raman pH probe. It was an azobenzene-featured small molecule responsive to protons with the inherent Raman signal ∼104-fold more intense than that of the conventional alkyne-type Raman reporter 5-ethynyl-2′-deoxyuridine. Through the substitution of the electron-donating and -withdrawing entities to the azobenzene group, the effect of resonance Raman scattering and fluorescence quenching was obtained. This effect resulted in a significant Raman enhancement factor of ∼103 compared to the counterpart molecules without the molecular design. Based on the enhanced Raman sensitivity of the azo-based resonance Raman pH probe, the identification of vibrational fingerprint changes at the azo group was achieved during the protonation/deprotonation reactions, and the vibrational fingerprint analysis resolved a pH difference of less than 0.2 unit. The method enabled sensitive hyperspectral cell imaging that clearly visualized the change of proton distribution in autophagic cells.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c03277</identifier><identifier>PMID: 34779624</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alkynes ; Analytical chemistry ; Azo compounds ; Chemical bonds ; Chemical reactions ; Chemistry ; Fingerprinting ; Fingerprints ; Fluorescence ; Lysosomes ; Microscopy ; pH effects ; Protonation ; Protons ; Raman spectra ; Resonance ; Resonance scattering ; Sensitivity enhancement ; Spectrum Analysis, Raman ; Vibration ; Vibrational states</subject><ispartof>Analytical chemistry (Washington), 2021-11, Vol.93 (47), p.15659-15666</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-b70de549fd586c0e0ad81a351a5b36a7269d3bb5869fe3a40b515ee242639b3b3</citedby><cites>FETCH-LOGICAL-a376t-b70de549fd586c0e0ad81a351a5b36a7269d3bb5869fe3a40b515ee242639b3b3</cites><orcidid>0000-0002-1586-9265 ; 0000-0002-7946-7863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34779624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yuchen</creatorcontrib><creatorcontrib>Chen, Xuqi</creatorcontrib><creatorcontrib>Zhang, Shaohua</creatorcontrib><creatorcontrib>Smith, Zachary J</creatorcontrib><creatorcontrib>Gao, Tingjuan</creatorcontrib><title>Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds are formed. Based on the changes of the vibrational modes for the corresponding bonds, fingerprint analysis of multiple Raman bands may allow for the in situ visualization of proton distribution in live cells. However, Raman scattering faces the well-known challenge of low sensitivity. To perform the vibrational fingerprint analysis of Raman scattering by overcoming this challenge, we developed an azo-based resonance Raman pH probe. It was an azobenzene-featured small molecule responsive to protons with the inherent Raman signal ∼104-fold more intense than that of the conventional alkyne-type Raman reporter 5-ethynyl-2′-deoxyuridine. Through the substitution of the electron-donating and -withdrawing entities to the azobenzene group, the effect of resonance Raman scattering and fluorescence quenching was obtained. This effect resulted in a significant Raman enhancement factor of ∼103 compared to the counterpart molecules without the molecular design. Based on the enhanced Raman sensitivity of the azo-based resonance Raman pH probe, the identification of vibrational fingerprint changes at the azo group was achieved during the protonation/deprotonation reactions, and the vibrational fingerprint analysis resolved a pH difference of less than 0.2 unit. The method enabled sensitive hyperspectral cell imaging that clearly visualized the change of proton distribution in autophagic cells.</description><subject>Alkynes</subject><subject>Analytical chemistry</subject><subject>Azo compounds</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>Fluorescence</subject><subject>Lysosomes</subject><subject>Microscopy</subject><subject>pH effects</subject><subject>Protonation</subject><subject>Protons</subject><subject>Raman spectra</subject><subject>Resonance</subject><subject>Resonance scattering</subject><subject>Sensitivity enhancement</subject><subject>Spectrum Analysis, Raman</subject><subject>Vibration</subject><subject>Vibrational states</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EokvhDRCyxIVLlrEd28lxtaVQaSVQ-XONxslkcZXExU4Oywvw2ni12x44cBpp5vd9M5qPsdcC1gKkeI9tWuOEQ_uTxrVoQUlrn7CV0BIKU1XyKVsBgCqkBbhgL1K6AxAChHnOLlRpbW1kuWJ_fngXcfYhO_FrP-0p3kc_zXyTG4fkEw89x4lvfofCYaKO31LK8NQSv8UxT762OM-UNXv-JQZHvA-R34y4P3fmMPErn-bo3XLcw_3EtzQMy4CR7w4ppDBSesme9TgkenWul-z79Ydv20_F7vPHm-1mV6CyZi6chY50WfedrkwLBNhVApUWqJ0yaKWpO-VcHtY9KSzBaaGJZCmNqp1y6pK9O_nex_BroTQ3o09tPgcnCktqpK5tJaxVZUbf_oPehSXmt2TKgLUClLaZKk9UG0NKkfom_2_EeGgENMegmhxU8xBUcw4qy96czRc3UvcoekgmA3ACjvLHxf_1_AvsvqPA</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Tang, Yuchen</creator><creator>Chen, Xuqi</creator><creator>Zhang, Shaohua</creator><creator>Smith, Zachary J</creator><creator>Gao, Tingjuan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1586-9265</orcidid><orcidid>https://orcid.org/0000-0002-7946-7863</orcidid></search><sort><creationdate>20211130</creationdate><title>Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes</title><author>Tang, Yuchen ; Chen, Xuqi ; Zhang, Shaohua ; Smith, Zachary J ; Gao, Tingjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-b70de549fd586c0e0ad81a351a5b36a7269d3bb5869fe3a40b515ee242639b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkynes</topic><topic>Analytical chemistry</topic><topic>Azo compounds</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>Fluorescence</topic><topic>Lysosomes</topic><topic>Microscopy</topic><topic>pH effects</topic><topic>Protonation</topic><topic>Protons</topic><topic>Raman spectra</topic><topic>Resonance</topic><topic>Resonance scattering</topic><topic>Sensitivity enhancement</topic><topic>Spectrum Analysis, Raman</topic><topic>Vibration</topic><topic>Vibrational states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yuchen</creatorcontrib><creatorcontrib>Chen, Xuqi</creatorcontrib><creatorcontrib>Zhang, Shaohua</creatorcontrib><creatorcontrib>Smith, Zachary J</creatorcontrib><creatorcontrib>Gao, Tingjuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yuchen</au><au>Chen, Xuqi</au><au>Zhang, Shaohua</au><au>Smith, Zachary J</au><au>Gao, Tingjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>93</volume><issue>47</issue><spage>15659</spage><epage>15666</epage><pages>15659-15666</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds are formed. Based on the changes of the vibrational modes for the corresponding bonds, fingerprint analysis of multiple Raman bands may allow for the in situ visualization of proton distribution in live cells. However, Raman scattering faces the well-known challenge of low sensitivity. To perform the vibrational fingerprint analysis of Raman scattering by overcoming this challenge, we developed an azo-based resonance Raman pH probe. It was an azobenzene-featured small molecule responsive to protons with the inherent Raman signal ∼104-fold more intense than that of the conventional alkyne-type Raman reporter 5-ethynyl-2′-deoxyuridine. Through the substitution of the electron-donating and -withdrawing entities to the azobenzene group, the effect of resonance Raman scattering and fluorescence quenching was obtained. This effect resulted in a significant Raman enhancement factor of ∼103 compared to the counterpart molecules without the molecular design. Based on the enhanced Raman sensitivity of the azo-based resonance Raman pH probe, the identification of vibrational fingerprint changes at the azo group was achieved during the protonation/deprotonation reactions, and the vibrational fingerprint analysis resolved a pH difference of less than 0.2 unit. The method enabled sensitive hyperspectral cell imaging that clearly visualized the change of proton distribution in autophagic cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34779624</pmid><doi>10.1021/acs.analchem.1c03277</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1586-9265</orcidid><orcidid>https://orcid.org/0000-0002-7946-7863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-11, Vol.93 (47), p.15659-15666
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2597817734
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Alkynes
Analytical chemistry
Azo compounds
Chemical bonds
Chemical reactions
Chemistry
Fingerprinting
Fingerprints
Fluorescence
Lysosomes
Microscopy
pH effects
Protonation
Protons
Raman spectra
Resonance
Resonance scattering
Sensitivity enhancement
Spectrum Analysis, Raman
Vibration
Vibrational states
title Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibrational%20Fingerprint%20Analysis%20of%20an%20Azo-based%20Resonance%20Raman%20Scattering%20Probe%20for%20Imaging%20Proton%20Distribution%20in%20Cellular%20Lysosomes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Tang,%20Yuchen&rft.date=2021-11-30&rft.volume=93&rft.issue=47&rft.spage=15659&rft.epage=15666&rft.pages=15659-15666&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c03277&rft_dat=%3Cproquest_cross%3E2607710357%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a376t-b70de549fd586c0e0ad81a351a5b36a7269d3bb5869fe3a40b515ee242639b3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607710357&rft_id=info:pmid/34779624&rfr_iscdi=true