Loading…

Heterogeneity is not always a source of noise: Stochastic gene expression in regulatory heterozygote

Zygosity of diploid genome (i.e., degree to which two parental alleles of a gene have varied genetic sequences) adds another dimension to stochastic gene expression. The allelic imbalance in chromatin accessibility or divergence in regulatory sequences leads to fitness effects but the quantitative a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2021-10, Vol.104 (4-1), p.044401-044401, Article 044401
Main Authors: Jang, Juneil, Amblard, François, Ghim, C-M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zygosity of diploid genome (i.e., degree to which two parental alleles of a gene have varied genetic sequences) adds another dimension to stochastic gene expression. The allelic imbalance in chromatin accessibility or divergence in regulatory sequences leads to fitness effects but the quantitative aspects thereof are largely left unexplored. We investigate diploid gene expression systems with homozygous (the same) and heterozygous (varied) combination of alleles in cis-regulatory sequences, not in structural gene loci, and characterize the zygosity-associated stochastic fluctuations in protein abundance. An emerging feat of heterozygosity is its counterintuitive capacity for genetic noise control. Especially when the noise is dominantly contributed to by the fluctuations in duty cycle ("reliability") rather than in process speed ("productivity") of gene expression machinery, its interallelic discrepancy acts to reduce the gene expression noise. These findings offer a novel insight into the rich repertoire of balancing selection enriched in the regulatory elements of immune response genes.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.104.044401