Loading…
A Rationally and Computationally Designed Fluorescent Biosensor for d‑Serine
Solute-binding proteins (SBPs) have evolved to balance the demands of ligand affinity, thermostability, and conformational change to accomplish diverse functions in small molecule transport, sensing, and chemotaxis. Although the ligand-induced conformational changes that occur in SBPs make them usef...
Saved in:
Published in: | ACS sensors 2021-11, Vol.6 (11), p.4193-4205 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solute-binding proteins (SBPs) have evolved to balance the demands of ligand affinity, thermostability, and conformational change to accomplish diverse functions in small molecule transport, sensing, and chemotaxis. Although the ligand-induced conformational changes that occur in SBPs make them useful components in biosensors, they are challenging targets for protein engineering and design. Here, we have engineered a d-alanine-specific SBP into a fluorescence biosensor with specificity for the signaling molecule d-serine (D-serFS). This was achieved through binding site and remote mutations that improved affinity (K D = 6.7 ± 0.5 μM), specificity (40-fold increase vs glycine), thermostability (T m = 79 °C), and dynamic range (∼14%). This sensor allowed measurement of physiologically relevant changes in d-serine concentration using two-photon excitation fluorescence microscopy in rat brain hippocampal slices. This work illustrates the functional trade-offs between protein dynamics, ligand affinity, and thermostability and how these must be balanced to achieve desirable activities in the engineering of complex, dynamic proteins. |
---|---|
ISSN: | 2379-3694 2379-3694 |
DOI: | 10.1021/acssensors.1c01803 |