Loading…

Vernal: a tool for mining fuzzy network motifs in RNA

Abstract Motivation RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of R...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2022-01, Vol.38 (4), p.970-976
Main Authors: Oliver, Carlos, Mallet, Vincent, Philippopoulos, Pericles, Hamilton, William L, Waldispühl, Jérôme
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 976
container_issue 4
container_start_page 970
container_title Bioinformatics
container_volume 38
creator Oliver, Carlos
Mallet, Vincent
Philippopoulos, Pericles
Hamilton, William L
Waldispühl, Jérôme
description Abstract Motivation RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space. Results Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs. Availability and implementation The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btab768
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2599069969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab768</oup_id><sourcerecordid>2599069969</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-68698d154133d06726ba3c4489fd6c3d982c93e974e5201d0e126d66a20febfb3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobk7_wsilN3UnTZom3o3hF4iCqLclaVKJtslsUmT79VY2Ba_OC-fhhfdBaE7ggoCkC-2C803oO5VcHRc6KV1ycYCmhHHIcijk4ZgpLzMmgE7QSYzvAAVhjB2jCWWlJMCKKSpebe9Ve4kVTiG0eKzEnfPOv-Fm2G432Nv0FfoP3IXkmoidx08Py1N01Kg22rP9naGX66vn1W12_3hzt1reZ4EImjIuuBSGFIxQaoCXOdeK1owJ2RheUyNFXktqZclskQMxYEnODecqh8bqRtMZOt_1rvvwOdiYqs7F2rat8jYMscoLKYFLyeWIzvfooDtrqnXvOtVvqt-pI0B2QBjWf18C1Y_O6r_Oaq-TfgN0lWnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599069969</pqid></control><display><type>article</type><title>Vernal: a tool for mining fuzzy network motifs in RNA</title><source>Oxford Journals Open Access Collection</source><creator>Oliver, Carlos ; Mallet, Vincent ; Philippopoulos, Pericles ; Hamilton, William L ; Waldispühl, Jérôme</creator><creatorcontrib>Oliver, Carlos ; Mallet, Vincent ; Philippopoulos, Pericles ; Hamilton, William L ; Waldispühl, Jérôme</creatorcontrib><description>Abstract Motivation RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space. Results Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs. Availability and implementation The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab768</identifier><identifier>PMID: 34791045</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Base Pairing ; Computational Biology ; Nucleotide Motifs ; RNA - chemistry ; Software</subject><ispartof>Bioinformatics, 2022-01, Vol.38 (4), p.970-976</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8742-8795 ; 0000-0002-2561-7117 ; 0000-0003-4664-754X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab768$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34791045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, Carlos</creatorcontrib><creatorcontrib>Mallet, Vincent</creatorcontrib><creatorcontrib>Philippopoulos, Pericles</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Waldispühl, Jérôme</creatorcontrib><title>Vernal: a tool for mining fuzzy network motifs in RNA</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space. Results Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs. Availability and implementation The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Base Pairing</subject><subject>Computational Biology</subject><subject>Nucleotide Motifs</subject><subject>RNA - chemistry</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhoMobk7_wsilN3UnTZom3o3hF4iCqLclaVKJtslsUmT79VY2Ba_OC-fhhfdBaE7ggoCkC-2C803oO5VcHRc6KV1ycYCmhHHIcijk4ZgpLzMmgE7QSYzvAAVhjB2jCWWlJMCKKSpebe9Ve4kVTiG0eKzEnfPOv-Fm2G432Nv0FfoP3IXkmoidx08Py1N01Kg22rP9naGX66vn1W12_3hzt1reZ4EImjIuuBSGFIxQaoCXOdeK1owJ2RheUyNFXktqZclskQMxYEnODecqh8bqRtMZOt_1rvvwOdiYqs7F2rat8jYMscoLKYFLyeWIzvfooDtrqnXvOtVvqt-pI0B2QBjWf18C1Y_O6r_Oaq-TfgN0lWnw</recordid><startdate>20220127</startdate><enddate>20220127</enddate><creator>Oliver, Carlos</creator><creator>Mallet, Vincent</creator><creator>Philippopoulos, Pericles</creator><creator>Hamilton, William L</creator><creator>Waldispühl, Jérôme</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8742-8795</orcidid><orcidid>https://orcid.org/0000-0002-2561-7117</orcidid><orcidid>https://orcid.org/0000-0003-4664-754X</orcidid></search><sort><creationdate>20220127</creationdate><title>Vernal: a tool for mining fuzzy network motifs in RNA</title><author>Oliver, Carlos ; Mallet, Vincent ; Philippopoulos, Pericles ; Hamilton, William L ; Waldispühl, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-68698d154133d06726ba3c4489fd6c3d982c93e974e5201d0e126d66a20febfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Base Pairing</topic><topic>Computational Biology</topic><topic>Nucleotide Motifs</topic><topic>RNA - chemistry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, Carlos</creatorcontrib><creatorcontrib>Mallet, Vincent</creatorcontrib><creatorcontrib>Philippopoulos, Pericles</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Waldispühl, Jérôme</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oliver, Carlos</au><au>Mallet, Vincent</au><au>Philippopoulos, Pericles</au><au>Hamilton, William L</au><au>Waldispühl, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vernal: a tool for mining fuzzy network motifs in RNA</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-01-27</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>970</spage><epage>976</epage><pages>970-976</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space. Results Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs. Availability and implementation The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34791045</pmid><doi>10.1093/bioinformatics/btab768</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8742-8795</orcidid><orcidid>https://orcid.org/0000-0002-2561-7117</orcidid><orcidid>https://orcid.org/0000-0003-4664-754X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2022-01, Vol.38 (4), p.970-976
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2599069969
source Oxford Journals Open Access Collection
subjects Algorithms
Base Pairing
Computational Biology
Nucleotide Motifs
RNA - chemistry
Software
title Vernal: a tool for mining fuzzy network motifs in RNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vernal:%20a%20tool%20for%20mining%20fuzzy%20network%20motifs%20in%20RNA&rft.jtitle=Bioinformatics&rft.au=Oliver,%20Carlos&rft.date=2022-01-27&rft.volume=38&rft.issue=4&rft.spage=970&rft.epage=976&rft.pages=970-976&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btab768&rft_dat=%3Cproquest_TOX%3E2599069969%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o183t-68698d154133d06726ba3c4489fd6c3d982c93e974e5201d0e126d66a20febfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599069969&rft_id=info:pmid/34791045&rft_oup_id=10.1093/bioinformatics/btab768&rfr_iscdi=true