Loading…
Vernal: a tool for mining fuzzy network motifs in RNA
Abstract Motivation RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of R...
Saved in:
Published in: | Bioinformatics 2022-01, Vol.38 (4), p.970-976 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 976 |
container_issue | 4 |
container_start_page | 970 |
container_title | Bioinformatics |
container_volume | 38 |
creator | Oliver, Carlos Mallet, Vincent Philippopoulos, Pericles Hamilton, William L Waldispühl, Jérôme |
description | Abstract
Motivation
RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space.
Results
Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs.
Availability and implementation
The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btab768 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2599069969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab768</oup_id><sourcerecordid>2599069969</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-68698d154133d06726ba3c4489fd6c3d982c93e974e5201d0e126d66a20febfb3</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMobk7_wsilN3UnTZom3o3hF4iCqLclaVKJtslsUmT79VY2Ba_OC-fhhfdBaE7ggoCkC-2C803oO5VcHRc6KV1ycYCmhHHIcijk4ZgpLzMmgE7QSYzvAAVhjB2jCWWlJMCKKSpebe9Ve4kVTiG0eKzEnfPOv-Fm2G432Nv0FfoP3IXkmoidx08Py1N01Kg22rP9naGX66vn1W12_3hzt1reZ4EImjIuuBSGFIxQaoCXOdeK1owJ2RheUyNFXktqZclskQMxYEnODecqh8bqRtMZOt_1rvvwOdiYqs7F2rat8jYMscoLKYFLyeWIzvfooDtrqnXvOtVvqt-pI0B2QBjWf18C1Y_O6r_Oaq-TfgN0lWnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599069969</pqid></control><display><type>article</type><title>Vernal: a tool for mining fuzzy network motifs in RNA</title><source>Oxford Journals Open Access Collection</source><creator>Oliver, Carlos ; Mallet, Vincent ; Philippopoulos, Pericles ; Hamilton, William L ; Waldispühl, Jérôme</creator><creatorcontrib>Oliver, Carlos ; Mallet, Vincent ; Philippopoulos, Pericles ; Hamilton, William L ; Waldispühl, Jérôme</creatorcontrib><description>Abstract
Motivation
RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space.
Results
Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs.
Availability and implementation
The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab768</identifier><identifier>PMID: 34791045</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Base Pairing ; Computational Biology ; Nucleotide Motifs ; RNA - chemistry ; Software</subject><ispartof>Bioinformatics, 2022-01, Vol.38 (4), p.970-976</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8742-8795 ; 0000-0002-2561-7117 ; 0000-0003-4664-754X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab768$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34791045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, Carlos</creatorcontrib><creatorcontrib>Mallet, Vincent</creatorcontrib><creatorcontrib>Philippopoulos, Pericles</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Waldispühl, Jérôme</creatorcontrib><title>Vernal: a tool for mining fuzzy network motifs in RNA</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space.
Results
Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs.
Availability and implementation
The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Base Pairing</subject><subject>Computational Biology</subject><subject>Nucleotide Motifs</subject><subject>RNA - chemistry</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAUhoMobk7_wsilN3UnTZom3o3hF4iCqLclaVKJtslsUmT79VY2Ba_OC-fhhfdBaE7ggoCkC-2C803oO5VcHRc6KV1ycYCmhHHIcijk4ZgpLzMmgE7QSYzvAAVhjB2jCWWlJMCKKSpebe9Ve4kVTiG0eKzEnfPOv-Fm2G432Nv0FfoP3IXkmoidx08Py1N01Kg22rP9naGX66vn1W12_3hzt1reZ4EImjIuuBSGFIxQaoCXOdeK1owJ2RheUyNFXktqZclskQMxYEnODecqh8bqRtMZOt_1rvvwOdiYqs7F2rat8jYMscoLKYFLyeWIzvfooDtrqnXvOtVvqt-pI0B2QBjWf18C1Y_O6r_Oaq-TfgN0lWnw</recordid><startdate>20220127</startdate><enddate>20220127</enddate><creator>Oliver, Carlos</creator><creator>Mallet, Vincent</creator><creator>Philippopoulos, Pericles</creator><creator>Hamilton, William L</creator><creator>Waldispühl, Jérôme</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8742-8795</orcidid><orcidid>https://orcid.org/0000-0002-2561-7117</orcidid><orcidid>https://orcid.org/0000-0003-4664-754X</orcidid></search><sort><creationdate>20220127</creationdate><title>Vernal: a tool for mining fuzzy network motifs in RNA</title><author>Oliver, Carlos ; Mallet, Vincent ; Philippopoulos, Pericles ; Hamilton, William L ; Waldispühl, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-68698d154133d06726ba3c4489fd6c3d982c93e974e5201d0e126d66a20febfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Base Pairing</topic><topic>Computational Biology</topic><topic>Nucleotide Motifs</topic><topic>RNA - chemistry</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, Carlos</creatorcontrib><creatorcontrib>Mallet, Vincent</creatorcontrib><creatorcontrib>Philippopoulos, Pericles</creatorcontrib><creatorcontrib>Hamilton, William L</creatorcontrib><creatorcontrib>Waldispühl, Jérôme</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oliver, Carlos</au><au>Mallet, Vincent</au><au>Philippopoulos, Pericles</au><au>Hamilton, William L</au><au>Waldispühl, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vernal: a tool for mining fuzzy network motifs in RNA</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-01-27</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>970</spage><epage>976</epage><pages>970-976</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
RNA 3D motifs are recurrent substructures, modeled as networks of base pair interactions, which are crucial for understanding structure–function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State-of-the-art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space.
Results
Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods and motif construction algorithms to recover flexible RNA motifs. Our tool, Vernal can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that Vernal is able to retrieve and expand known classes of motifs, as well as to propose novel motifs.
Availability and implementation
The source code, data and a webserver are available at vernal.cs.mcgill.ca. We also provide a flexible interface and a user-friendly webserver to browse and download our results.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34791045</pmid><doi>10.1093/bioinformatics/btab768</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8742-8795</orcidid><orcidid>https://orcid.org/0000-0002-2561-7117</orcidid><orcidid>https://orcid.org/0000-0003-4664-754X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2022-01, Vol.38 (4), p.970-976 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2599069969 |
source | Oxford Journals Open Access Collection |
subjects | Algorithms Base Pairing Computational Biology Nucleotide Motifs RNA - chemistry Software |
title | Vernal: a tool for mining fuzzy network motifs in RNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vernal:%20a%20tool%20for%20mining%20fuzzy%20network%20motifs%20in%20RNA&rft.jtitle=Bioinformatics&rft.au=Oliver,%20Carlos&rft.date=2022-01-27&rft.volume=38&rft.issue=4&rft.spage=970&rft.epage=976&rft.pages=970-976&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btab768&rft_dat=%3Cproquest_TOX%3E2599069969%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-o183t-68698d154133d06726ba3c4489fd6c3d982c93e974e5201d0e126d66a20febfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599069969&rft_id=info:pmid/34791045&rft_oup_id=10.1093/bioinformatics/btab768&rfr_iscdi=true |