Loading…
[nat/89Zr][Zr(pypa)]: Thermodynamically Stable and Kinetically Inert Binary Nonadentate Complex for Radiopharmaceutical Applications
H4pypa is a nonadentate nonmacrocyclic chelator, which previously demonstrated high affinity for scandium-44, lutetium-177, and indium-111. Herein, we report the highly stable binary [Zr(pypa)] complex; the nonradioactive complex was synthesized and characterized in detail using high-resolution ele...
Saved in:
Published in: | Inorganic chemistry 2021-12, Vol.60 (23), p.18082-18093 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | H4pypa is a nonadentate nonmacrocyclic chelator, which previously demonstrated high affinity for scandium-44, lutetium-177, and indium-111. Herein, we report the highly stable binary [Zr(pypa)] complex; the nonradioactive complex was synthesized and characterized in detail using high-resolution electrospray-ionization mass spectroscopy (HR-ESI-MS) and various nuclear magnetic resonance spectroscopies (NMR), which revealed C 2v symmetry of the complex. The geometry of [Zr(pypa)] was further detailed via X-ray crystallography and compared with the structure of [Fe(Hpypa)]. Despite a slow complexation rate with an association half-life of 31.4 h at pH 2 and room temperature, the [Zr(pypa)] complex is thermodynamically stable (log K ML = 38.92, pZr = 39.4). Radiochemical studies demonstrated quantitative radiolabeling achieved at 10 μM chelator concentration within 2 h at 40 °C and pH = 7, antibody-compatible conditions. Of the utmost importance, [89Zr][Zr(pypa)] is highly kinetically inert upon challenge with excess EDTA and DFO ligands, superior to [89Zr][Zr(DFO)]+, and maintains inertness toward human serum. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c02709 |