Loading…
In Situ Nanotransformable Hydrogel for Chemo-Photothermal Therapy of Localized Tumors and Targeted Therapy of Highly Metastatic Tumors
Metastasis is one of the predisposing factors for cancer-related mortalities worldwide. Patients with advanced cancers (stage IV) receive palliative care with minimal possibility of achieving complete remission. Antibody-based therapeutic modalities are capable of targeting tumors that are confined...
Saved in:
Published in: | ACS applied materials & interfaces 2021-12, Vol.13 (47), p.55862-55878 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metastasis is one of the predisposing factors for cancer-related mortalities worldwide. Patients with advanced cancers (stage IV) receive palliative care with minimal possibility of achieving complete remission. Antibody-based therapeutic modalities are capable of targeting tumors that are confined to a particular location but are ineffective in targeting distant secondary tumors. In the current study, we have developed a smart nano-transforming hydrogel (NTG) that transforms in situ to polymeric nanoparticles (PA NPs) of 100–150 nm when injected subcutaneously. These nanoparticles targeted the primary and secondary metastatic tumors for up to ∼5 and ∼3 days, respectively. The in situ-formed PA NPs also demonstrated a pH-responsive drug release resulting in about ∼80% release within 100 h at 5.8 pH. When tested in vivo, substantial inhibition of lung metastases was observed compared to chemotherapy, thus demonstrating the efficiency of nanotransforming hydrogels in targeting and inhibiting primary and secondary metastatic tumors. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c17054 |