Loading…
A2Sign: Agnostic Algorithms for Signatures—a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution
Abstract Motivation Molecular signatures are critical for inferring the proportions of cell types from bulk transcriptomics data. However, the identification of these signatures is based on a methodology that relies on prior biological knowledge of the cell types being studied. When working with les...
Saved in:
Published in: | Bioinformatics 2022-01, Vol.38 (4), p.1015-1021 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c268t-86b124eae2e90d241342e5b7d9e7b402f0e016a37b6a6243a41654803165c0593 |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-86b124eae2e90d241342e5b7d9e7b402f0e016a37b6a6243a41654803165c0593 |
container_end_page | 1021 |
container_issue | 4 |
container_start_page | 1015 |
container_title | Bioinformatics |
container_volume | 38 |
creator | Boldina, Galina Fogel, Paul Rocher, Corinne Bettembourg, Charles Luta, George Augé, Franck |
description | Abstract
Motivation
Molecular signatures are critical for inferring the proportions of cell types from bulk transcriptomics data. However, the identification of these signatures is based on a methodology that relies on prior biological knowledge of the cell types being studied. When working with less known biological material, a data-driven approach is required to uncover the underlying classes and generate ad hoc signatures from healthy or pathogenic tissue.
Results
We present a new approach, A2Sign: Agnostic Algorithms for Signatures, based on a non-negative tensor factorization (NTF) strategy that allows us to identify cell-type-specific molecular signatures, greatly reduce collinearities and also account for inter-individual variability. We propose a global framework that can be applied to uncover molecular signatures for cell-type deconvolution in arbitrary tissues using bulk transcriptome data. We also present two new molecular signatures for deconvolution of up to 16 immune cell types using microarray or RNA-seq data.
Availability and implementation
All steps of our analysis were implemented in annotated Python notebooks (https://github.com/paulfogel/A2SIGN). To perform NTF, we used the NMTF package, which can be downloaded using Python pip install.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btab773 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2599074198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btab773</oup_id><sourcerecordid>2599074198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-86b124eae2e90d241342e5b7d9e7b402f0e016a37b6a6243a41654803165c0593</originalsourceid><addsrcrecordid>eNqNkctu1TAQhi1ERS_wCpWXbNL6Fjthd1RxqVSJBWUdOcnk1Ci2g8epdHY8BE_Ao_Ek9eEcKrFjNSPN9_9jz0_IJWdXnLXyunfRhSkmb7Mb8LrPtjdGviBnXGlWCVa3L0svtalUw-QpOUf8xljNlVKvyKlUpmlM25yRXxvxxW3DO7rZhojFi27mbUwuP3ikxZ_upzavCfD3j5-WrsE9QkI7Uw_5IY5_GDdCyG7aubClPs4wrLNNFJ-VdErR05xswCG5JUdf9ow2W4SMdEmueORIB5jnKu8WoCMMMTzGec0uhtfkZLIzwptjvSBfP7y_v_lU3X3-eHuzuasGoZtcNbrnQoEFAS0bheJSCah7M7ZgesXExIBxbaXptdVCSau4rvfHKWUo95IX5O3Bd0nx-wqYO-9w_yYbIK7YibptmVG8bQqqD-iQImKCqSuf8DbtOs66fT7dv_l0x3yK8PK4Y-09jM-yv4EUgB-AuC7_a_oEzF6o4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599074198</pqid></control><display><type>article</type><title>A2Sign: Agnostic Algorithms for Signatures—a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution</title><source>Oxford Academic Journals (Open Access)</source><creator>Boldina, Galina ; Fogel, Paul ; Rocher, Corinne ; Bettembourg, Charles ; Luta, George ; Augé, Franck</creator><contributor>Birol, Inanc</contributor><creatorcontrib>Boldina, Galina ; Fogel, Paul ; Rocher, Corinne ; Bettembourg, Charles ; Luta, George ; Augé, Franck ; Birol, Inanc</creatorcontrib><description>Abstract
Motivation
Molecular signatures are critical for inferring the proportions of cell types from bulk transcriptomics data. However, the identification of these signatures is based on a methodology that relies on prior biological knowledge of the cell types being studied. When working with less known biological material, a data-driven approach is required to uncover the underlying classes and generate ad hoc signatures from healthy or pathogenic tissue.
Results
We present a new approach, A2Sign: Agnostic Algorithms for Signatures, based on a non-negative tensor factorization (NTF) strategy that allows us to identify cell-type-specific molecular signatures, greatly reduce collinearities and also account for inter-individual variability. We propose a global framework that can be applied to uncover molecular signatures for cell-type deconvolution in arbitrary tissues using bulk transcriptome data. We also present two new molecular signatures for deconvolution of up to 16 immune cell types using microarray or RNA-seq data.
Availability and implementation
All steps of our analysis were implemented in annotated Python notebooks (https://github.com/paulfogel/A2SIGN). To perform NTF, we used the NMTF package, which can be downloaded using Python pip install.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btab773</identifier><identifier>PMID: 34788798</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Exome Sequencing ; Gene Expression Profiling ; RNA-Seq ; Transcriptome</subject><ispartof>Bioinformatics, 2022-01, Vol.38 (4), p.1015-1021</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-86b124eae2e90d241342e5b7d9e7b402f0e016a37b6a6243a41654803165c0593</citedby><cites>FETCH-LOGICAL-c268t-86b124eae2e90d241342e5b7d9e7b402f0e016a37b6a6243a41654803165c0593</cites><orcidid>0000-0002-8829-022X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btab773$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34788798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Birol, Inanc</contributor><creatorcontrib>Boldina, Galina</creatorcontrib><creatorcontrib>Fogel, Paul</creatorcontrib><creatorcontrib>Rocher, Corinne</creatorcontrib><creatorcontrib>Bettembourg, Charles</creatorcontrib><creatorcontrib>Luta, George</creatorcontrib><creatorcontrib>Augé, Franck</creatorcontrib><title>A2Sign: Agnostic Algorithms for Signatures—a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Molecular signatures are critical for inferring the proportions of cell types from bulk transcriptomics data. However, the identification of these signatures is based on a methodology that relies on prior biological knowledge of the cell types being studied. When working with less known biological material, a data-driven approach is required to uncover the underlying classes and generate ad hoc signatures from healthy or pathogenic tissue.
Results
We present a new approach, A2Sign: Agnostic Algorithms for Signatures, based on a non-negative tensor factorization (NTF) strategy that allows us to identify cell-type-specific molecular signatures, greatly reduce collinearities and also account for inter-individual variability. We propose a global framework that can be applied to uncover molecular signatures for cell-type deconvolution in arbitrary tissues using bulk transcriptome data. We also present two new molecular signatures for deconvolution of up to 16 immune cell types using microarray or RNA-seq data.
Availability and implementation
All steps of our analysis were implemented in annotated Python notebooks (https://github.com/paulfogel/A2SIGN). To perform NTF, we used the NMTF package, which can be downloaded using Python pip install.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Exome Sequencing</subject><subject>Gene Expression Profiling</subject><subject>RNA-Seq</subject><subject>Transcriptome</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkctu1TAQhi1ERS_wCpWXbNL6Fjthd1RxqVSJBWUdOcnk1Ci2g8epdHY8BE_Ao_Ek9eEcKrFjNSPN9_9jz0_IJWdXnLXyunfRhSkmb7Mb8LrPtjdGviBnXGlWCVa3L0svtalUw-QpOUf8xljNlVKvyKlUpmlM25yRXxvxxW3DO7rZhojFi27mbUwuP3ikxZ_upzavCfD3j5-WrsE9QkI7Uw_5IY5_GDdCyG7aubClPs4wrLNNFJ-VdErR05xswCG5JUdf9ow2W4SMdEmueORIB5jnKu8WoCMMMTzGec0uhtfkZLIzwptjvSBfP7y_v_lU3X3-eHuzuasGoZtcNbrnQoEFAS0bheJSCah7M7ZgesXExIBxbaXptdVCSau4rvfHKWUo95IX5O3Bd0nx-wqYO-9w_yYbIK7YibptmVG8bQqqD-iQImKCqSuf8DbtOs66fT7dv_l0x3yK8PK4Y-09jM-yv4EUgB-AuC7_a_oEzF6o4Q</recordid><startdate>20220127</startdate><enddate>20220127</enddate><creator>Boldina, Galina</creator><creator>Fogel, Paul</creator><creator>Rocher, Corinne</creator><creator>Bettembourg, Charles</creator><creator>Luta, George</creator><creator>Augé, Franck</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8829-022X</orcidid></search><sort><creationdate>20220127</creationdate><title>A2Sign: Agnostic Algorithms for Signatures—a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution</title><author>Boldina, Galina ; Fogel, Paul ; Rocher, Corinne ; Bettembourg, Charles ; Luta, George ; Augé, Franck</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-86b124eae2e90d241342e5b7d9e7b402f0e016a37b6a6243a41654803165c0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Exome Sequencing</topic><topic>Gene Expression Profiling</topic><topic>RNA-Seq</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boldina, Galina</creatorcontrib><creatorcontrib>Fogel, Paul</creatorcontrib><creatorcontrib>Rocher, Corinne</creatorcontrib><creatorcontrib>Bettembourg, Charles</creatorcontrib><creatorcontrib>Luta, George</creatorcontrib><creatorcontrib>Augé, Franck</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boldina, Galina</au><au>Fogel, Paul</au><au>Rocher, Corinne</au><au>Bettembourg, Charles</au><au>Luta, George</au><au>Augé, Franck</au><au>Birol, Inanc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A2Sign: Agnostic Algorithms for Signatures—a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-01-27</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>1015</spage><epage>1021</epage><pages>1015-1021</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Molecular signatures are critical for inferring the proportions of cell types from bulk transcriptomics data. However, the identification of these signatures is based on a methodology that relies on prior biological knowledge of the cell types being studied. When working with less known biological material, a data-driven approach is required to uncover the underlying classes and generate ad hoc signatures from healthy or pathogenic tissue.
Results
We present a new approach, A2Sign: Agnostic Algorithms for Signatures, based on a non-negative tensor factorization (NTF) strategy that allows us to identify cell-type-specific molecular signatures, greatly reduce collinearities and also account for inter-individual variability. We propose a global framework that can be applied to uncover molecular signatures for cell-type deconvolution in arbitrary tissues using bulk transcriptome data. We also present two new molecular signatures for deconvolution of up to 16 immune cell types using microarray or RNA-seq data.
Availability and implementation
All steps of our analysis were implemented in annotated Python notebooks (https://github.com/paulfogel/A2SIGN). To perform NTF, we used the NMTF package, which can be downloaded using Python pip install.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34788798</pmid><doi>10.1093/bioinformatics/btab773</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8829-022X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2022-01, Vol.38 (4), p.1015-1021 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2599074198 |
source | Oxford Academic Journals (Open Access) |
subjects | Algorithms Exome Sequencing Gene Expression Profiling RNA-Seq Transcriptome |
title | A2Sign: Agnostic Algorithms for Signatures—a universal method for identifying molecular signatures from transcriptomic datasets prior to cell-type deconvolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A2Sign:%20Agnostic%20Algorithms%20for%20Signatures%E2%80%94a%20universal%20method%20for%20identifying%20molecular%20signatures%20from%20transcriptomic%20datasets%20prior%20to%20cell-type%20deconvolution&rft.jtitle=Bioinformatics&rft.au=Boldina,%20Galina&rft.date=2022-01-27&rft.volume=38&rft.issue=4&rft.spage=1015&rft.epage=1021&rft.pages=1015-1021&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btab773&rft_dat=%3Cproquest_TOX%3E2599074198%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-86b124eae2e90d241342e5b7d9e7b402f0e016a37b6a6243a41654803165c0593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599074198&rft_id=info:pmid/34788798&rft_oup_id=10.1093/bioinformatics/btab773&rfr_iscdi=true |