Loading…
A distributed 3D Navier-Stokes solver in Express
The Navier-Stokes equations are central to applied scientific research. The complete set of three-dimensional Navier-Stokes equations is very complex and thus requires a substantial amount of computer time as well as memory in order to obtain an accurate solution. The scalability in both processing...
Saved in:
Published in: | Energy & fuels 1993-11, Vol.7 (6), p.897-901 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Navier-Stokes equations are central to applied scientific research. The complete set of three-dimensional Navier-Stokes equations is very complex and thus requires a substantial amount of computer time as well as memory in order to obtain an accurate solution. The scalability in both processing power and memory space of distributed-memory parallel computers give promise of solving large scale three-dimensional scientific problems based on these equations. In this paper, we describe the implementation and performance of a distributed three-dimensional Navier-Stokes solver in Parasoft's Express. We have run the solver on both the IBM Victor Computer (a 256-node transputer based system) and a token ring networked IBM RS/6000-520 workstation. Our test results demonstrate that distributed multiprocessing allows researchers to solve large scale computational fluid dynamics problems and can improve their productivity with reducing turnaround time. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/ef00042a028 |