Loading…
Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method
Breast cancer is one of the deadliest diseases in women and its incidence is growing at an alarming rate. However, early detection of this disease can be life-saving. The rapid development of deep learning techniques has generated a great deal of interest in the medical imaging field. Researchers ar...
Saved in:
Published in: | Computers in biology and medicine 2022-02, Vol.141, p.105027-105027, Article 105027 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-7af7cdf837d7a39c7f7b725e53191ab9c729272f7e8917a961fb5d704ee385fe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-7af7cdf837d7a39c7f7b725e53191ab9c729272f7e8917a961fb5d704ee385fe3 |
container_end_page | 105027 |
container_issue | |
container_start_page | 105027 |
container_title | Computers in biology and medicine |
container_volume | 141 |
creator | Chatterjee, Somnath Biswas, Shreya Majee, Arindam Sen, Shibaprasad Oliva, Diego Sarkar, Ram |
description | Breast cancer is one of the deadliest diseases in women and its incidence is growing at an alarming rate. However, early detection of this disease can be life-saving. The rapid development of deep learning techniques has generated a great deal of interest in the medical imaging field. Researchers around the world are working on developing breast cancer detection methods using medical imaging. In the present work, we have proposed a two-stage model for breast cancer detection using thermographic images. Firstly, features are extracted from images using a deep learning model, called VGG16. To select the optimal subset of features, we use a meta-heuristic algorithm called the Dragonfly Algorithm (DA) in the second step. To improve the performance of the DA, a memory-based version of DA is proposed using the Grunwald-Letnikov (GL) method. The proposed two-stage framework has been evaluated on a publicly available standard dataset called DMR-IR. The proposed model efficiently filters out non-essential features and had 100% diagnostic accuracy on the standard dataset, with 82% fewer features compared to the VGG16 model.
•We combined a deep neural network with meta-heuristic optimization to detect breast cancer.•We used transfer learning to avoid over-fitting of the CNN model and a small dataset.•We propose a modified version of Dragonfly Algorithm to reduce the feature dimension.•We achieved impressive results on the publicly available DMR-IR breast cancer dataset. |
doi_str_mv | 10.1016/j.compbiomed.2021.105027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2600283509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521008210</els_id><sourcerecordid>2623597853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7af7cdf837d7a39c7f7b725e53191ab9c729272f7e8917a961fb5d704ee385fe3</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhi0EYsvCKyBLXLikjO24jo_sAgtSJS5wthx73LokcbGTRXvmxXHVrpC4cLI0841n9H-EUAZrBmzz7rB2aTz2MY3o1xw4q2UJXD0hK9Yp3YAU7VOyAmDQtB2XV-RFKQcAaEHAc3IlWqU1qM2K_L7JaMtMnZ0cZupxRjfHNNGQ00jnPebRDjSOdoeFLiVOO2rpXV6mX3bwzRbnKf5I942NHj39kO0uTWF4oHbYpRzn_dj0ttSORzzSgHZeMtKCw2XJiPM--ZfkWbBDwVeX95p8__Tx2-3nZvv17svt-23jWuBzo2xQzodOKK-s0E4F1SsuUQqmme1rgWuueFDYaaas3rDQS6-gRRSdDCiuydvzv8ecfi5YZjPG4nAY7IRpKYZvAHgnJOiKvvkHPaQlT_W6SnEhteqkqFR3plxOpWQM5phrVPnBMDAnUeZg_ooyJ1HmLKqOvr4sWPpT73Hw0UwFbs4A1kTuI2ZTXMQqycdc0zM-xf9v-QPe7KsR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623597853</pqid></control><display><type>article</type><title>Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method</title><source>Elsevier</source><creator>Chatterjee, Somnath ; Biswas, Shreya ; Majee, Arindam ; Sen, Shibaprasad ; Oliva, Diego ; Sarkar, Ram</creator><creatorcontrib>Chatterjee, Somnath ; Biswas, Shreya ; Majee, Arindam ; Sen, Shibaprasad ; Oliva, Diego ; Sarkar, Ram</creatorcontrib><description>Breast cancer is one of the deadliest diseases in women and its incidence is growing at an alarming rate. However, early detection of this disease can be life-saving. The rapid development of deep learning techniques has generated a great deal of interest in the medical imaging field. Researchers around the world are working on developing breast cancer detection methods using medical imaging. In the present work, we have proposed a two-stage model for breast cancer detection using thermographic images. Firstly, features are extracted from images using a deep learning model, called VGG16. To select the optimal subset of features, we use a meta-heuristic algorithm called the Dragonfly Algorithm (DA) in the second step. To improve the performance of the DA, a memory-based version of DA is proposed using the Grunwald-Letnikov (GL) method. The proposed two-stage framework has been evaluated on a publicly available standard dataset called DMR-IR. The proposed model efficiently filters out non-essential features and had 100% diagnostic accuracy on the standard dataset, with 82% fewer features compared to the VGG16 model.
•We combined a deep neural network with meta-heuristic optimization to detect breast cancer.•We used transfer learning to avoid over-fitting of the CNN model and a small dataset.•We propose a modified version of Dragonfly Algorithm to reduce the feature dimension.•We achieved impressive results on the publicly available DMR-IR breast cancer dataset.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.105027</identifier><identifier>PMID: 34799076</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Accuracy ; Algorithms ; Angiogenesis ; Breast cancer ; Breast cancer detection ; Breast Neoplasms - diagnostic imaging ; Datasets ; Deep learning ; Diabetes ; Dragonfly algorithm ; Evolutionary Algorithms ; Feature extraction ; Feature selection ; Female ; Fractional order calculus ; Heuristic methods ; Humans ; Learning ; Machine learning ; Mammography ; Medical Image analysis ; Medical imaging ; Medical research ; Metabolism ; Neural networks ; Optimization ; Software ; Thermography ; Thermography image ; Tumors ; Womens health</subject><ispartof>Computers in biology and medicine, 2022-02, Vol.141, p.105027-105027, Article 105027</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7af7cdf837d7a39c7f7b725e53191ab9c729272f7e8917a961fb5d704ee385fe3</citedby><cites>FETCH-LOGICAL-c402t-7af7cdf837d7a39c7f7b725e53191ab9c729272f7e8917a961fb5d704ee385fe3</cites><orcidid>0000-0002-4732-2029 ; 0000-0001-8813-4086 ; 0000-0001-8781-7993 ; 0000-0003-1015-2908 ; 0000-0002-5387-4639 ; 0000-0003-4815-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34799076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chatterjee, Somnath</creatorcontrib><creatorcontrib>Biswas, Shreya</creatorcontrib><creatorcontrib>Majee, Arindam</creatorcontrib><creatorcontrib>Sen, Shibaprasad</creatorcontrib><creatorcontrib>Oliva, Diego</creatorcontrib><creatorcontrib>Sarkar, Ram</creatorcontrib><title>Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Breast cancer is one of the deadliest diseases in women and its incidence is growing at an alarming rate. However, early detection of this disease can be life-saving. The rapid development of deep learning techniques has generated a great deal of interest in the medical imaging field. Researchers around the world are working on developing breast cancer detection methods using medical imaging. In the present work, we have proposed a two-stage model for breast cancer detection using thermographic images. Firstly, features are extracted from images using a deep learning model, called VGG16. To select the optimal subset of features, we use a meta-heuristic algorithm called the Dragonfly Algorithm (DA) in the second step. To improve the performance of the DA, a memory-based version of DA is proposed using the Grunwald-Letnikov (GL) method. The proposed two-stage framework has been evaluated on a publicly available standard dataset called DMR-IR. The proposed model efficiently filters out non-essential features and had 100% diagnostic accuracy on the standard dataset, with 82% fewer features compared to the VGG16 model.
•We combined a deep neural network with meta-heuristic optimization to detect breast cancer.•We used transfer learning to avoid over-fitting of the CNN model and a small dataset.•We propose a modified version of Dragonfly Algorithm to reduce the feature dimension.•We achieved impressive results on the publicly available DMR-IR breast cancer dataset.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Angiogenesis</subject><subject>Breast cancer</subject><subject>Breast cancer detection</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>Dragonfly algorithm</subject><subject>Evolutionary Algorithms</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Female</subject><subject>Fractional order calculus</subject><subject>Heuristic methods</subject><subject>Humans</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Medical Image analysis</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Metabolism</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Software</subject><subject>Thermography</subject><subject>Thermography image</subject><subject>Tumors</subject><subject>Womens health</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkcGO0zAQhi0EYsvCKyBLXLikjO24jo_sAgtSJS5wthx73LokcbGTRXvmxXHVrpC4cLI0841n9H-EUAZrBmzz7rB2aTz2MY3o1xw4q2UJXD0hK9Yp3YAU7VOyAmDQtB2XV-RFKQcAaEHAc3IlWqU1qM2K_L7JaMtMnZ0cZupxRjfHNNGQ00jnPebRDjSOdoeFLiVOO2rpXV6mX3bwzRbnKf5I942NHj39kO0uTWF4oHbYpRzn_dj0ttSORzzSgHZeMtKCw2XJiPM--ZfkWbBDwVeX95p8__Tx2-3nZvv17svt-23jWuBzo2xQzodOKK-s0E4F1SsuUQqmme1rgWuueFDYaaas3rDQS6-gRRSdDCiuydvzv8ecfi5YZjPG4nAY7IRpKYZvAHgnJOiKvvkHPaQlT_W6SnEhteqkqFR3plxOpWQM5phrVPnBMDAnUeZg_ooyJ1HmLKqOvr4sWPpT73Hw0UwFbs4A1kTuI2ZTXMQqycdc0zM-xf9v-QPe7KsR</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Chatterjee, Somnath</creator><creator>Biswas, Shreya</creator><creator>Majee, Arindam</creator><creator>Sen, Shibaprasad</creator><creator>Oliva, Diego</creator><creator>Sarkar, Ram</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4732-2029</orcidid><orcidid>https://orcid.org/0000-0001-8813-4086</orcidid><orcidid>https://orcid.org/0000-0001-8781-7993</orcidid><orcidid>https://orcid.org/0000-0003-1015-2908</orcidid><orcidid>https://orcid.org/0000-0002-5387-4639</orcidid><orcidid>https://orcid.org/0000-0003-4815-6621</orcidid></search><sort><creationdate>202202</creationdate><title>Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method</title><author>Chatterjee, Somnath ; Biswas, Shreya ; Majee, Arindam ; Sen, Shibaprasad ; Oliva, Diego ; Sarkar, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7af7cdf837d7a39c7f7b725e53191ab9c729272f7e8917a961fb5d704ee385fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Angiogenesis</topic><topic>Breast cancer</topic><topic>Breast cancer detection</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>Dragonfly algorithm</topic><topic>Evolutionary Algorithms</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Female</topic><topic>Fractional order calculus</topic><topic>Heuristic methods</topic><topic>Humans</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Medical Image analysis</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Metabolism</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Software</topic><topic>Thermography</topic><topic>Thermography image</topic><topic>Tumors</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Somnath</creatorcontrib><creatorcontrib>Biswas, Shreya</creatorcontrib><creatorcontrib>Majee, Arindam</creatorcontrib><creatorcontrib>Sen, Shibaprasad</creatorcontrib><creatorcontrib>Oliva, Diego</creatorcontrib><creatorcontrib>Sarkar, Ram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Somnath</au><au>Biswas, Shreya</au><au>Majee, Arindam</au><au>Sen, Shibaprasad</au><au>Oliva, Diego</au><au>Sarkar, Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-02</date><risdate>2022</risdate><volume>141</volume><spage>105027</spage><epage>105027</epage><pages>105027-105027</pages><artnum>105027</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Breast cancer is one of the deadliest diseases in women and its incidence is growing at an alarming rate. However, early detection of this disease can be life-saving. The rapid development of deep learning techniques has generated a great deal of interest in the medical imaging field. Researchers around the world are working on developing breast cancer detection methods using medical imaging. In the present work, we have proposed a two-stage model for breast cancer detection using thermographic images. Firstly, features are extracted from images using a deep learning model, called VGG16. To select the optimal subset of features, we use a meta-heuristic algorithm called the Dragonfly Algorithm (DA) in the second step. To improve the performance of the DA, a memory-based version of DA is proposed using the Grunwald-Letnikov (GL) method. The proposed two-stage framework has been evaluated on a publicly available standard dataset called DMR-IR. The proposed model efficiently filters out non-essential features and had 100% diagnostic accuracy on the standard dataset, with 82% fewer features compared to the VGG16 model.
•We combined a deep neural network with meta-heuristic optimization to detect breast cancer.•We used transfer learning to avoid over-fitting of the CNN model and a small dataset.•We propose a modified version of Dragonfly Algorithm to reduce the feature dimension.•We achieved impressive results on the publicly available DMR-IR breast cancer dataset.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>34799076</pmid><doi>10.1016/j.compbiomed.2021.105027</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4732-2029</orcidid><orcidid>https://orcid.org/0000-0001-8813-4086</orcidid><orcidid>https://orcid.org/0000-0001-8781-7993</orcidid><orcidid>https://orcid.org/0000-0003-1015-2908</orcidid><orcidid>https://orcid.org/0000-0002-5387-4639</orcidid><orcidid>https://orcid.org/0000-0003-4815-6621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-02, Vol.141, p.105027-105027, Article 105027 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2600283509 |
source | Elsevier |
subjects | Accuracy Algorithms Angiogenesis Breast cancer Breast cancer detection Breast Neoplasms - diagnostic imaging Datasets Deep learning Diabetes Dragonfly algorithm Evolutionary Algorithms Feature extraction Feature selection Female Fractional order calculus Heuristic methods Humans Learning Machine learning Mammography Medical Image analysis Medical imaging Medical research Metabolism Neural networks Optimization Software Thermography Thermography image Tumors Womens health |
title | Breast cancer detection from thermal images using a Grunwald-Letnikov-aided Dragonfly algorithm-based deep feature selection method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A01%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20cancer%20detection%20from%20thermal%20images%20using%20a%20Grunwald-Letnikov-aided%20Dragonfly%20algorithm-based%20deep%20feature%20selection%20method&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Chatterjee,%20Somnath&rft.date=2022-02&rft.volume=141&rft.spage=105027&rft.epage=105027&rft.pages=105027-105027&rft.artnum=105027&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.105027&rft_dat=%3Cproquest_cross%3E2623597853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-7af7cdf837d7a39c7f7b725e53191ab9c729272f7e8917a961fb5d704ee385fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2623597853&rft_id=info:pmid/34799076&rfr_iscdi=true |