Loading…
Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization
We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian op...
Saved in:
Published in: | Optics express 2021-10, Vol.29 (22), p.35623-35639 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3 |
container_end_page | 35639 |
container_issue | 22 |
container_start_page | 35623 |
container_title | Optics express |
container_volume | 29 |
creator | Seo, Sangwon Lee, Jae Hoon Lee, Sang-Bum Park, Sang Eon Seo, Meung Ho Park, Jongcheol Kwon, Taeg Yong Hong, Hyun-Gue |
description | We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles. |
doi_str_mv | 10.1364/OE.437991 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2601490166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601490166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw4B_kCIeOfK1pjmgaA2loFzhXbueOoKYpSYaAX0-mceBkS378WH4JueZsxmWp7jbLmZLaGH5CJpwZVShW6dN__Tm5iPGdMa600RPinuHLOvuDWwrJOzrsXYOBdj5QoLsAyQ476mA3YPKFH5NtoacpwEg_LeRB-2YHLHqEMBxIiNHGlGUjBHCYsuqwlA9kkx8uyVkHfcSrvzolrw_Ll8Vjsd6snhb366KVUqdCNxVKpSRjIJjQppIdV41uUEppGlUBdooppZUw8zkKBaKsujlmTuhyqxs5JTdH7xj8xx5jqp2NLfY9DOj3sRZl_t8wXpYZvT2ibfAxBuzqMVgH4bvmrD5EWm-W9TFS-QuGo2mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601490166</pqid></control><display><type>article</type><title>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</title><source>EZB Electronic Journals Library</source><creator>Seo, Sangwon ; Lee, Jae Hoon ; Lee, Sang-Bum ; Park, Sang Eon ; Seo, Meung Ho ; Park, Jongcheol ; Kwon, Taeg Yong ; Hong, Hyun-Gue</creator><creatorcontrib>Seo, Sangwon ; Lee, Jae Hoon ; Lee, Sang-Bum ; Park, Sang Eon ; Seo, Meung Ho ; Park, Jongcheol ; Kwon, Taeg Yong ; Hong, Hyun-Gue</creatorcontrib><description>We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.437991</identifier><language>eng</language><ispartof>Optics express, 2021-10, Vol.29 (22), p.35623-35639</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</citedby><cites>FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</cites><orcidid>0000-0001-6686-0319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Seo, Sangwon</creatorcontrib><creatorcontrib>Lee, Jae Hoon</creatorcontrib><creatorcontrib>Lee, Sang-Bum</creatorcontrib><creatorcontrib>Park, Sang Eon</creatorcontrib><creatorcontrib>Seo, Meung Ho</creatorcontrib><creatorcontrib>Park, Jongcheol</creatorcontrib><creatorcontrib>Kwon, Taeg Yong</creatorcontrib><creatorcontrib>Hong, Hyun-Gue</creatorcontrib><title>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</title><title>Optics express</title><description>We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmNw4B_kCIeOfK1pjmgaA2loFzhXbueOoKYpSYaAX0-mceBkS378WH4JueZsxmWp7jbLmZLaGH5CJpwZVShW6dN__Tm5iPGdMa600RPinuHLOvuDWwrJOzrsXYOBdj5QoLsAyQ476mA3YPKFH5NtoacpwEg_LeRB-2YHLHqEMBxIiNHGlGUjBHCYsuqwlA9kkx8uyVkHfcSrvzolrw_Ll8Vjsd6snhb366KVUqdCNxVKpSRjIJjQppIdV41uUEppGlUBdooppZUw8zkKBaKsujlmTuhyqxs5JTdH7xj8xx5jqp2NLfY9DOj3sRZl_t8wXpYZvT2ibfAxBuzqMVgH4bvmrD5EWm-W9TFS-QuGo2mQ</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Seo, Sangwon</creator><creator>Lee, Jae Hoon</creator><creator>Lee, Sang-Bum</creator><creator>Park, Sang Eon</creator><creator>Seo, Meung Ho</creator><creator>Park, Jongcheol</creator><creator>Kwon, Taeg Yong</creator><creator>Hong, Hyun-Gue</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6686-0319</orcidid></search><sort><creationdate>20211025</creationdate><title>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</title><author>Seo, Sangwon ; Lee, Jae Hoon ; Lee, Sang-Bum ; Park, Sang Eon ; Seo, Meung Ho ; Park, Jongcheol ; Kwon, Taeg Yong ; Hong, Hyun-Gue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Sangwon</creatorcontrib><creatorcontrib>Lee, Jae Hoon</creatorcontrib><creatorcontrib>Lee, Sang-Bum</creatorcontrib><creatorcontrib>Park, Sang Eon</creatorcontrib><creatorcontrib>Seo, Meung Ho</creatorcontrib><creatorcontrib>Park, Jongcheol</creatorcontrib><creatorcontrib>Kwon, Taeg Yong</creatorcontrib><creatorcontrib>Hong, Hyun-Gue</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Sangwon</au><au>Lee, Jae Hoon</au><au>Lee, Sang-Bum</au><au>Park, Sang Eon</au><au>Seo, Meung Ho</au><au>Park, Jongcheol</au><au>Kwon, Taeg Yong</au><au>Hong, Hyun-Gue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</atitle><jtitle>Optics express</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>29</volume><issue>22</issue><spage>35623</spage><epage>35639</epage><pages>35623-35639</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles.</abstract><doi>10.1364/OE.437991</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6686-0319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2021-10, Vol.29 (22), p.35623-35639 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2601490166 |
source | EZB Electronic Journals Library |
title | Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximized%20atom%20number%20for%20a%20grating%20magneto-optical%20trap%20via%20machine-learning%20assisted%20parameter%20optimization&rft.jtitle=Optics%20express&rft.au=Seo,%20Sangwon&rft.date=2021-10-25&rft.volume=29&rft.issue=22&rft.spage=35623&rft.epage=35639&rft.pages=35623-35639&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.437991&rft_dat=%3Cproquest_cross%3E2601490166%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601490166&rft_id=info:pmid/&rfr_iscdi=true |