Loading…

Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization

We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian op...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2021-10, Vol.29 (22), p.35623-35639
Main Authors: Seo, Sangwon, Lee, Jae Hoon, Lee, Sang-Bum, Park, Sang Eon, Seo, Meung Ho, Park, Jongcheol, Kwon, Taeg Yong, Hong, Hyun-Gue
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3
cites cdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3
container_end_page 35639
container_issue 22
container_start_page 35623
container_title Optics express
container_volume 29
creator Seo, Sangwon
Lee, Jae Hoon
Lee, Sang-Bum
Park, Sang Eon
Seo, Meung Ho
Park, Jongcheol
Kwon, Taeg Yong
Hong, Hyun-Gue
description We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles.
doi_str_mv 10.1364/OE.437991
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2601490166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601490166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw4B_kCIeOfK1pjmgaA2loFzhXbueOoKYpSYaAX0-mceBkS378WH4JueZsxmWp7jbLmZLaGH5CJpwZVShW6dN__Tm5iPGdMa600RPinuHLOvuDWwrJOzrsXYOBdj5QoLsAyQ476mA3YPKFH5NtoacpwEg_LeRB-2YHLHqEMBxIiNHGlGUjBHCYsuqwlA9kkx8uyVkHfcSrvzolrw_Ll8Vjsd6snhb366KVUqdCNxVKpSRjIJjQppIdV41uUEppGlUBdooppZUw8zkKBaKsujlmTuhyqxs5JTdH7xj8xx5jqp2NLfY9DOj3sRZl_t8wXpYZvT2ibfAxBuzqMVgH4bvmrD5EWm-W9TFS-QuGo2mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601490166</pqid></control><display><type>article</type><title>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</title><source>EZB Electronic Journals Library</source><creator>Seo, Sangwon ; Lee, Jae Hoon ; Lee, Sang-Bum ; Park, Sang Eon ; Seo, Meung Ho ; Park, Jongcheol ; Kwon, Taeg Yong ; Hong, Hyun-Gue</creator><creatorcontrib>Seo, Sangwon ; Lee, Jae Hoon ; Lee, Sang-Bum ; Park, Sang Eon ; Seo, Meung Ho ; Park, Jongcheol ; Kwon, Taeg Yong ; Hong, Hyun-Gue</creatorcontrib><description>We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.437991</identifier><language>eng</language><ispartof>Optics express, 2021-10, Vol.29 (22), p.35623-35639</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</citedby><cites>FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</cites><orcidid>0000-0001-6686-0319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Seo, Sangwon</creatorcontrib><creatorcontrib>Lee, Jae Hoon</creatorcontrib><creatorcontrib>Lee, Sang-Bum</creatorcontrib><creatorcontrib>Park, Sang Eon</creatorcontrib><creatorcontrib>Seo, Meung Ho</creatorcontrib><creatorcontrib>Park, Jongcheol</creatorcontrib><creatorcontrib>Kwon, Taeg Yong</creatorcontrib><creatorcontrib>Hong, Hyun-Gue</creatorcontrib><title>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</title><title>Optics express</title><description>We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmNw4B_kCIeOfK1pjmgaA2loFzhXbueOoKYpSYaAX0-mceBkS378WH4JueZsxmWp7jbLmZLaGH5CJpwZVShW6dN__Tm5iPGdMa600RPinuHLOvuDWwrJOzrsXYOBdj5QoLsAyQ476mA3YPKFH5NtoacpwEg_LeRB-2YHLHqEMBxIiNHGlGUjBHCYsuqwlA9kkx8uyVkHfcSrvzolrw_Ll8Vjsd6snhb366KVUqdCNxVKpSRjIJjQppIdV41uUEppGlUBdooppZUw8zkKBaKsujlmTuhyqxs5JTdH7xj8xx5jqp2NLfY9DOj3sRZl_t8wXpYZvT2ibfAxBuzqMVgH4bvmrD5EWm-W9TFS-QuGo2mQ</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Seo, Sangwon</creator><creator>Lee, Jae Hoon</creator><creator>Lee, Sang-Bum</creator><creator>Park, Sang Eon</creator><creator>Seo, Meung Ho</creator><creator>Park, Jongcheol</creator><creator>Kwon, Taeg Yong</creator><creator>Hong, Hyun-Gue</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6686-0319</orcidid></search><sort><creationdate>20211025</creationdate><title>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</title><author>Seo, Sangwon ; Lee, Jae Hoon ; Lee, Sang-Bum ; Park, Sang Eon ; Seo, Meung Ho ; Park, Jongcheol ; Kwon, Taeg Yong ; Hong, Hyun-Gue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Sangwon</creatorcontrib><creatorcontrib>Lee, Jae Hoon</creatorcontrib><creatorcontrib>Lee, Sang-Bum</creatorcontrib><creatorcontrib>Park, Sang Eon</creatorcontrib><creatorcontrib>Seo, Meung Ho</creatorcontrib><creatorcontrib>Park, Jongcheol</creatorcontrib><creatorcontrib>Kwon, Taeg Yong</creatorcontrib><creatorcontrib>Hong, Hyun-Gue</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Sangwon</au><au>Lee, Jae Hoon</au><au>Lee, Sang-Bum</au><au>Park, Sang Eon</au><au>Seo, Meung Ho</au><au>Park, Jongcheol</au><au>Kwon, Taeg Yong</au><au>Hong, Hyun-Gue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization</atitle><jtitle>Optics express</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>29</volume><issue>22</issue><spage>35623</spage><epage>35639</epage><pages>35623-35639</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We present a parameter set for obtaining the maximum number of atoms in a grating magneto-optical trap (gMOT) by employing a machine learning algorithm. In the multi-dimensional parameter space, which imposes a challenge for global optimization, the atom number is efficiently modeled via Bayesian optimization with the evaluation of the trap performance given by a Monte-Carlo simulation. Modeling gMOTs for six representative atomic species - 7 Li, 23 Na, 87 Rb, 88 Sr, 133 Cs, 174 Yb - allows us to discover that the optimal grating reflectivity is consistently higher than a simple estimation based on balanced optical molasses. Our algorithm also yields the optimal diffraction angle which is independent of the beam waist. The validity of the optimal parameter set for the case of 87 Rb is experimentally verified using a set of grating chips with different reflectivities and diffraction angles.</abstract><doi>10.1364/OE.437991</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6686-0319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2021-10, Vol.29 (22), p.35623-35639
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2601490166
source EZB Electronic Journals Library
title Maximized atom number for a grating magneto-optical trap via machine-learning assisted parameter optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximized%20atom%20number%20for%20a%20grating%20magneto-optical%20trap%20via%20machine-learning%20assisted%20parameter%20optimization&rft.jtitle=Optics%20express&rft.au=Seo,%20Sangwon&rft.date=2021-10-25&rft.volume=29&rft.issue=22&rft.spage=35623&rft.epage=35639&rft.pages=35623-35639&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.437991&rft_dat=%3Cproquest_cross%3E2601490166%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-7b8e344300a2027983f14b7be3339b48aef4044742955e24a268f5e983276d7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601490166&rft_id=info:pmid/&rfr_iscdi=true