Loading…
Image restoration for real-world under-display imaging
Under-display imaging technique was recently proposed to enlarge the screen-to-body ratio for full-screen devices. However, existing image restoration algorithms have difficulty generalizing to real-world under-display (UD) images, especially to images containing strong light sources. To address thi...
Saved in:
Published in: | Optics express 2021-11, Vol.29 (23), p.37820-37834 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Under-display imaging technique was recently proposed to enlarge the screen-to-body ratio for full-screen devices. However, existing image restoration algorithms have difficulty generalizing to real-world under-display (UD) images, especially to images containing strong light sources. To address this issue, we propose a novel method for building a synthetic dataset (CalibPSF dataset) and introduce a two-stage neural network to solve the under-display imaging degradation problem. The CalibPSF dataset is generated using the calibrated high dynamic range point spread function (PSF) of the under-display optical system and contains various simulated light sources. The two-stage network solves the color distortion and diffraction degradation in order. We evaluate the performance of our algorithm on our captured real-world test set. Comprehensive experiments demonstrate the superiority of our method in different dynamic range scenes. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.441256 |