Loading…
A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat
Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient i...
Saved in:
Published in: | Planta 2021-12, Vol.254 (6), p.1-14, Article 130 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-5c765cd43f8e8d037b5997d5ab13f1f9def2732c5cfe0f15d6ac4b03adc208983 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-5c765cd43f8e8d037b5997d5ab13f1f9def2732c5cfe0f15d6ac4b03adc208983 |
container_end_page | 14 |
container_issue | 6 |
container_start_page | 1 |
container_title | Planta |
container_volume | 254 |
creator | Liang, Xiao-Dong Shalapy, Mohamed Zhao, Shi-Feng Liu, Jing-Hui Wang, Jun-Ying |
description | Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding. |
doi_str_mv | 10.1007/s00425-021-03770-6 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2601998233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27294866</jstor_id><sourcerecordid>27294866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-5c765cd43f8e8d037b5997d5ab13f1f9def2732c5cfe0f15d6ac4b03adc208983</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotvCH0ACWeLCxTD-iJ0cV1u-pAo4wDlynEmaVdZebKdS-fV4m1IkDlzsseZ93xnrIeQFh7ccwLxLAEpUDARnII0Bph-RDVdSMAGqfkw2AKWGRlZn5DylPUBpGvOUnElVc6OV2pBfW5pyxJRYOY7Bp-kGaY7WJxenY56Cp4N1OUT6Db9sd5xGHJfZ5smPtMNs2SUb58VZT7sppFufrzFPjo7oMVH019a7UiQ7Z5rDjPH0ppOnweZn5Mlg54TP7-8L8uPD---7T-zq68fPu-0Vc0rLzCpndOV6JYca6758tKuaxvSV7bgc-ND0OAgjhavcgDDwqtfWqQ6k7Z2AuqnlBXmz5h5j-Llgyu1hSg7n2XoMS2qFBt40tZCySF__I92HJfqy3Z3KiEbzU6BYVS6GlCIO7TFOBxtvWw7tiUy7kmkLmfaOTKuL6dV99NIdsH-w_EFRBHIVpNLyI8a_s_8b-3J17VOB9JAqyqqq1lr-BhxnpA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601729618</pqid></control><display><type>article</type><title>A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat</title><source>Springer Link</source><creator>Liang, Xiao-Dong ; Shalapy, Mohamed ; Zhao, Shi-Feng ; Liu, Jing-Hui ; Wang, Jun-Ying</creator><creatorcontrib>Liang, Xiao-Dong ; Shalapy, Mohamed ; Zhao, Shi-Feng ; Liu, Jing-Hui ; Wang, Jun-Ying</creatorcontrib><description>Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-021-03770-6</identifier><identifier>PMID: 34817644</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Abiotic stress ; Agriculture ; Avena - genetics ; Avena - metabolism ; Biomedical and Life Sciences ; Chlorophyll ; Cultivation ; Ecology ; Forestry ; Gene Expression Regulation, Plant ; Genes ; Genetic engineering ; Germination ; Glucan ; Glucans ; Grain cultivation ; Life Sciences ; Oats ; ORIGINAL ARTICLE ; Plant breeding ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants, Genetically Modified - metabolism ; Populus euphratica ; Salinity ; Salinity effects ; Salinity tolerance ; Salt tolerance ; Salt Tolerance - genetics ; Seed germination ; Seedlings ; Stress, Physiological - genetics ; Survival ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transgenic plants ; β-Glucan</subject><ispartof>Planta, 2021-12, Vol.254 (6), p.1-14, Article 130</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-5c765cd43f8e8d037b5997d5ab13f1f9def2732c5cfe0f15d6ac4b03adc208983</citedby><cites>FETCH-LOGICAL-c463t-5c765cd43f8e8d037b5997d5ab13f1f9def2732c5cfe0f15d6ac4b03adc208983</cites><orcidid>0000-0002-3363-2966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34817644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xiao-Dong</creatorcontrib><creatorcontrib>Shalapy, Mohamed</creatorcontrib><creatorcontrib>Zhao, Shi-Feng</creatorcontrib><creatorcontrib>Liu, Jing-Hui</creatorcontrib><creatorcontrib>Wang, Jun-Ying</creatorcontrib><title>A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.</description><subject>Abiotic stress</subject><subject>Agriculture</subject><subject>Avena - genetics</subject><subject>Avena - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorophyll</subject><subject>Cultivation</subject><subject>Ecology</subject><subject>Forestry</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Germination</subject><subject>Glucan</subject><subject>Glucans</subject><subject>Grain cultivation</subject><subject>Life Sciences</subject><subject>Oats</subject><subject>ORIGINAL ARTICLE</subject><subject>Plant breeding</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Populus euphratica</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salt tolerance</subject><subject>Salt Tolerance - genetics</subject><subject>Seed germination</subject><subject>Seedlings</subject><subject>Stress, Physiological - genetics</subject><subject>Survival</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transgenic plants</subject><subject>β-Glucan</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EotvCH0ACWeLCxTD-iJ0cV1u-pAo4wDlynEmaVdZebKdS-fV4m1IkDlzsseZ93xnrIeQFh7ccwLxLAEpUDARnII0Bph-RDVdSMAGqfkw2AKWGRlZn5DylPUBpGvOUnElVc6OV2pBfW5pyxJRYOY7Bp-kGaY7WJxenY56Cp4N1OUT6Db9sd5xGHJfZ5smPtMNs2SUb58VZT7sppFufrzFPjo7oMVH019a7UiQ7Z5rDjPH0ppOnweZn5Mlg54TP7-8L8uPD---7T-zq68fPu-0Vc0rLzCpndOV6JYca6758tKuaxvSV7bgc-ND0OAgjhavcgDDwqtfWqQ6k7Z2AuqnlBXmz5h5j-Llgyu1hSg7n2XoMS2qFBt40tZCySF__I92HJfqy3Z3KiEbzU6BYVS6GlCIO7TFOBxtvWw7tiUy7kmkLmfaOTKuL6dV99NIdsH-w_EFRBHIVpNLyI8a_s_8b-3J17VOB9JAqyqqq1lr-BhxnpA0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liang, Xiao-Dong</creator><creator>Shalapy, Mohamed</creator><creator>Zhao, Shi-Feng</creator><creator>Liu, Jing-Hui</creator><creator>Wang, Jun-Ying</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3363-2966</orcidid></search><sort><creationdate>20211201</creationdate><title>A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat</title><author>Liang, Xiao-Dong ; Shalapy, Mohamed ; Zhao, Shi-Feng ; Liu, Jing-Hui ; Wang, Jun-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-5c765cd43f8e8d037b5997d5ab13f1f9def2732c5cfe0f15d6ac4b03adc208983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Agriculture</topic><topic>Avena - genetics</topic><topic>Avena - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorophyll</topic><topic>Cultivation</topic><topic>Ecology</topic><topic>Forestry</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Germination</topic><topic>Glucan</topic><topic>Glucans</topic><topic>Grain cultivation</topic><topic>Life Sciences</topic><topic>Oats</topic><topic>ORIGINAL ARTICLE</topic><topic>Plant breeding</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Populus euphratica</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salt tolerance</topic><topic>Salt Tolerance - genetics</topic><topic>Seed germination</topic><topic>Seedlings</topic><topic>Stress, Physiological - genetics</topic><topic>Survival</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transgenic plants</topic><topic>β-Glucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiao-Dong</creatorcontrib><creatorcontrib>Shalapy, Mohamed</creatorcontrib><creatorcontrib>Zhao, Shi-Feng</creatorcontrib><creatorcontrib>Liu, Jing-Hui</creatorcontrib><creatorcontrib>Wang, Jun-Ying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiao-Dong</au><au>Shalapy, Mohamed</au><au>Zhao, Shi-Feng</au><au>Liu, Jing-Hui</au><au>Wang, Jun-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>254</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>130</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>34817644</pmid><doi>10.1007/s00425-021-03770-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3363-2966</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2021-12, Vol.254 (6), p.1-14, Article 130 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_2601998233 |
source | Springer Link |
subjects | Abiotic stress Agriculture Avena - genetics Avena - metabolism Biomedical and Life Sciences Chlorophyll Cultivation Ecology Forestry Gene Expression Regulation, Plant Genes Genetic engineering Germination Glucan Glucans Grain cultivation Life Sciences Oats ORIGINAL ARTICLE Plant breeding Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Plants, Genetically Modified - metabolism Populus euphratica Salinity Salinity effects Salinity tolerance Salt tolerance Salt Tolerance - genetics Seed germination Seedlings Stress, Physiological - genetics Survival Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Transgenic plants β-Glucan |
title | A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stress-responsive%20transcription%20factor%20PeNAC1%20regulating%20beta-D-glucan%20biosynthetic%20genes%20enhances%20salt%20tolerance%20in%20oat&rft.jtitle=Planta&rft.au=Liang,%20Xiao-Dong&rft.date=2021-12-01&rft.volume=254&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=130&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-021-03770-6&rft_dat=%3Cjstor_proqu%3E27294866%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-5c765cd43f8e8d037b5997d5ab13f1f9def2732c5cfe0f15d6ac4b03adc208983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601729618&rft_id=info:pmid/34817644&rft_jstor_id=27294866&rfr_iscdi=true |