Loading…
CuO dot-decorated Cu@Gd2O3 core–shell hierarchical structure for Cu(i) self-supplying chemodynamic therapy in combination with MRI-guided photothermal synergistic therapy
Theoretically, the Fenton catalytic efficiency of the Cu-based nanoplatform is approximately 160 times that of traditional Fe-based agents. However, the coordination interaction between Cu(ii) and intracellular GSH significantly inhibits the high catalytic activity of Cu(i) generation, dramatically...
Saved in:
Published in: | Materials horizons 2021-03, Vol.8 (3), p.1017-1028 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Theoretically, the Fenton catalytic efficiency of the Cu-based nanoplatform is approximately 160 times that of traditional Fe-based agents. However, the coordination interaction between Cu(ii) and intracellular GSH significantly inhibits the high catalytic activity of Cu(i) generation, dramatically decreasing the Fenton-like catalytic efficiency. Herein, we designed a completely new and highly efficient hierarchical structural nanoplatform to enhance the mimic-peroxidase activity through utilizing comproportionation between CuO and elemental Cu core to self-supply Cu(i). The catalytic rate of this nanoplatform was approximately 55-fold that of traditional Fe-based agents. In a cell assay, this nanoplatform could function as an antagonist of GPX4 and agonist of SOD-1, resulting in intracellular ROS and H2O2 accumulation. Next, the accumulated H2O2 could be quickly catalyzed to highly toxic ·OH by self-supplying Cu(i), causing strong oxidative stress damage to mitochondria and cell membranes. Under 808 nm laser irradiation, this nanoplatform exhibited a stronger inhibition of tumor growth, and effectively overcame the tumor resistance and recurrence. In addition, this hierarchical structure significantly promoted the interaction between water molecules and gadolinium centers, making TRF-mCuGd possess an ultrahigh T1 MRI contrast performance, and hence, more pathological information of the tumor could be achieved. Overall, this work provides a promising pattern for the design and development of cancer theranostics. |
---|---|
ISSN: | 2051-6347 2051-6355 |
DOI: | 10.1039/d0mh01685c |