Loading…
Rheology‐modulated alterations in electro‐magneto‐hydrodynamic flows in a narrow cylindrical capillary: Contrasting trends in high and low surface charge limits
We investigate electrokinetic transport of power‐law fluids in a narrow cylindrical capillary in the presence of a transverse magnetic field. The governing equations including the full Poisson‐Boltzmann equation and the Cauchy momentum equation with power‐law constitutive behavior are solved numeric...
Saved in:
Published in: | Electrophoresis 2022-03, Vol.43 (5-6), p.732-740 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate electrokinetic transport of power‐law fluids in a narrow cylindrical capillary in the presence of a transverse magnetic field. The governing equations including the full Poisson‐Boltzmann equation and the Cauchy momentum equation with power‐law constitutive behavior are solved numerically, without being restrictive to low surface potential limits. The influence of the power‐law index, wall zeta potential, relative strength of electromagnetic force over viscous force (as represented by the Hartmann number), and the lateral electric field strength on the variation of the volumetric flow rate is analyzed. Our results reveal a significant augmentation in the net‐throughput beyond the traditionally explored low surface‐charge limits, especially for shear‐thinning fluids, defying the established notions. These fundamental theoretical premises may act as essential precursors towards developing deeper insights on fluidic transport bio‐nanopores under electro‐magneto‐ hydrodynamic influences. |
---|---|
ISSN: | 0173-0835 1522-2683 |
DOI: | 10.1002/elps.202100105 |