Loading…
Skin-friendly corrugated multilayer microspherical sensor fabricated with silk fibroin, poly (lactic-co-glycolic acid), polyaniline, and kappa-carrageenan for wide range pressure detection
To enlarge the linear detection range without sacrificing the sensitivity is one of the urgent problems in the development of high-performance piezoresistive flexible sensors. Inspired by a multilayer corrugated board, this study develops a new multilayer microspherical sensor in which conductive co...
Saved in:
Published in: | International journal of biological macromolecules 2022-01, Vol.194, p.755-762 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To enlarge the linear detection range without sacrificing the sensitivity is one of the urgent problems in the development of high-performance piezoresistive flexible sensors. Inspired by a multilayer corrugated board, this study develops a new multilayer microspherical sensor in which conductive core-shell SiO2/Polyaniline (PANI) (PS) microspheres serve as active particles, while insulated silk fibroin (SF)/poly lactic-co-glycolic acid (PLGA) (SP) fibers are used as the support. The size of conductive microspheres attached to the insulated layer is controllable. The multiple layers of assembly endow the flexible sensor with a high sensitivity (0.071 kPa−1) and a wide linear detection (from 10 Pa to 380 kPa) simultaneously. This corrugated sensor also have a fast response time (145 ms) and an excellent durability (over 2000 cycles), and it can be used to detect human joint pressure signals and transmit encrypted information. Moreover, flexible keyboard, safety protection of machinery, as well as object position tracking can be achieved based on this sensor. Most importantly, the sensor encapsulated by biological polysaccharide kappa-carrageenan (KC) is skin-friendly and breathable, and it can be decomposed in 90 °C hot water. In conclusion, this multilayer microspherical sensor presents great potential for flexible wearable devices.
We get inspiration from the multi-layer structure of corrugated board and prepare a multilayer microspherical sensor. This degradable and breathable sensor can improve the linear detection range without sacrificing the sensitivity. [Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2021.11.122 |