Loading…

Mechanochemistry Advances High‐Performance Perovskite Solar Cells

A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometri...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2022-02, Vol.34 (6), p.e2107420-n/a
Main Authors: Zhang, Yuzhuo, Wang, Yanju, Yang, Xiaoyu, Zhao, Lichen, Su, Rui, Wu, Jiang, Luo, Deying, Li, Shunde, Chen, Peng, Yu, Maotao, Gong, Qihuang, Zhu, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3
cites cdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3
container_end_page n/a
container_issue 6
container_start_page e2107420
container_title Advanced materials (Weinheim)
container_volume 34
creator Zhang, Yuzhuo
Wang, Yanju
Yang, Xiaoyu
Zhao, Lichen
Su, Rui
Wu, Jiang
Luo, Deying
Li, Shunde
Chen, Peng
Yu, Maotao
Gong, Qihuang
Zhu, Rui
description A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization. A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved.
doi_str_mv 10.1002/adma.202107420
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604830772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627048786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqWwZYkisWGTMrGd2FlG4VGkViABa8txHJqSR7Gbou74BL6RL8FVS5HYsJrR6MzR1UXoNIBhAIAvZV7LIQYcAKMY9lA_CHHgU4jDfdSHmIR-HFHeQ0fWzgAgjiA6RD1COQ1ZRPoonWg1lU2rprou7cKsvCRfykZp643Kl-nXx-eDNkVr6vXNc3u7tK_lQnuPbSWNl-qqssfooJCV1SfbOUDPN9dP6cgf39_epcnYV4QR8AlmmAc41jwqQpeFyVwWTLKAFyqPKI4gVjmwTGquOVMQUhmTXGYhY2GWMUkG6GLjnZv2rdN2IVxk5RLIRredFc5AOQHGsEPP_6CztjONS-cozBzHeOSo4YZSprXW6ELMTVlLsxIBiHW9Yl2v2NXrHs622i6rdb7Df_p0QLwB3stKr_7RieRqkvzKvwHIYIY9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627048786</pqid></control><display><type>article</type><title>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhang, Yuzhuo ; Wang, Yanju ; Yang, Xiaoyu ; Zhao, Lichen ; Su, Rui ; Wu, Jiang ; Luo, Deying ; Li, Shunde ; Chen, Peng ; Yu, Maotao ; Gong, Qihuang ; Zhu, Rui</creator><creatorcontrib>Zhang, Yuzhuo ; Wang, Yanju ; Yang, Xiaoyu ; Zhao, Lichen ; Su, Rui ; Wu, Jiang ; Luo, Deying ; Li, Shunde ; Chen, Peng ; Yu, Maotao ; Gong, Qihuang ; Zhu, Rui</creatorcontrib><description>A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization. A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202107420</identifier><identifier>PMID: 34845763</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Commercialization ; Crystal defects ; Crystal structure ; Crystallization ; Energy conversion efficiency ; Mass production ; Materials science ; Maximum power ; mechanochemistry ; Nucleation ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Precursors ; pure‐phase perovskite powder ; Relative humidity ; Solar cells ; stable storage ; Storage stability</subject><ispartof>Advanced materials (Weinheim), 2022-02, Vol.34 (6), p.e2107420-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</citedby><cites>FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</cites><orcidid>0000-0001-7631-3589 ; 0000-0002-8967-6749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34845763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuzhuo</creatorcontrib><creatorcontrib>Wang, Yanju</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Luo, Deying</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Maotao</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><title>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization. A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved.</description><subject>Carrier transport</subject><subject>Commercialization</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Energy conversion efficiency</subject><subject>Mass production</subject><subject>Materials science</subject><subject>Maximum power</subject><subject>mechanochemistry</subject><subject>Nucleation</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>pure‐phase perovskite powder</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>stable storage</subject><subject>Storage stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqWwZYkisWGTMrGd2FlG4VGkViABa8txHJqSR7Gbou74BL6RL8FVS5HYsJrR6MzR1UXoNIBhAIAvZV7LIQYcAKMY9lA_CHHgU4jDfdSHmIR-HFHeQ0fWzgAgjiA6RD1COQ1ZRPoonWg1lU2rprou7cKsvCRfykZp643Kl-nXx-eDNkVr6vXNc3u7tK_lQnuPbSWNl-qqssfooJCV1SfbOUDPN9dP6cgf39_epcnYV4QR8AlmmAc41jwqQpeFyVwWTLKAFyqPKI4gVjmwTGquOVMQUhmTXGYhY2GWMUkG6GLjnZv2rdN2IVxk5RLIRredFc5AOQHGsEPP_6CztjONS-cozBzHeOSo4YZSprXW6ELMTVlLsxIBiHW9Yl2v2NXrHs622i6rdb7Df_p0QLwB3stKr_7RieRqkvzKvwHIYIY9</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhang, Yuzhuo</creator><creator>Wang, Yanju</creator><creator>Yang, Xiaoyu</creator><creator>Zhao, Lichen</creator><creator>Su, Rui</creator><creator>Wu, Jiang</creator><creator>Luo, Deying</creator><creator>Li, Shunde</creator><creator>Chen, Peng</creator><creator>Yu, Maotao</creator><creator>Gong, Qihuang</creator><creator>Zhu, Rui</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-8967-6749</orcidid></search><sort><creationdate>20220201</creationdate><title>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</title><author>Zhang, Yuzhuo ; Wang, Yanju ; Yang, Xiaoyu ; Zhao, Lichen ; Su, Rui ; Wu, Jiang ; Luo, Deying ; Li, Shunde ; Chen, Peng ; Yu, Maotao ; Gong, Qihuang ; Zhu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier transport</topic><topic>Commercialization</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Energy conversion efficiency</topic><topic>Mass production</topic><topic>Materials science</topic><topic>Maximum power</topic><topic>mechanochemistry</topic><topic>Nucleation</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>pure‐phase perovskite powder</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>stable storage</topic><topic>Storage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuzhuo</creatorcontrib><creatorcontrib>Wang, Yanju</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Luo, Deying</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Maotao</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuzhuo</au><au>Wang, Yanju</au><au>Yang, Xiaoyu</au><au>Zhao, Lichen</au><au>Su, Rui</au><au>Wu, Jiang</au><au>Luo, Deying</au><au>Li, Shunde</au><au>Chen, Peng</au><au>Yu, Maotao</au><au>Gong, Qihuang</au><au>Zhu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>e2107420</spage><epage>n/a</epage><pages>e2107420-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization. A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34845763</pmid><doi>10.1002/adma.202107420</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-8967-6749</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-02, Vol.34 (6), p.e2107420-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2604830772
source Wiley-Blackwell Read & Publish Collection
subjects Carrier transport
Commercialization
Crystal defects
Crystal structure
Crystallization
Energy conversion efficiency
Mass production
Materials science
Maximum power
mechanochemistry
Nucleation
perovskite solar cells
Perovskites
Photovoltaic cells
Precursors
pure‐phase perovskite powder
Relative humidity
Solar cells
stable storage
Storage stability
title Mechanochemistry Advances High‐Performance Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemistry%20Advances%20High%E2%80%90Performance%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Yuzhuo&rft.date=2022-02-01&rft.volume=34&rft.issue=6&rft.spage=e2107420&rft.epage=n/a&rft.pages=e2107420-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202107420&rft_dat=%3Cproquest_cross%3E2627048786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627048786&rft_id=info:pmid/34845763&rfr_iscdi=true