Loading…
Mechanochemistry Advances High‐Performance Perovskite Solar Cells
A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometri...
Saved in:
Published in: | Advanced materials (Weinheim) 2022-02, Vol.34 (6), p.e2107420-n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e2107420 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Zhang, Yuzhuo Wang, Yanju Yang, Xiaoyu Zhao, Lichen Su, Rui Wu, Jiang Luo, Deying Li, Shunde Chen, Peng Yu, Maotao Gong, Qihuang Zhu, Rui |
description | A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization.
A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved. |
doi_str_mv | 10.1002/adma.202107420 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604830772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2627048786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqWwZYkisWGTMrGd2FlG4VGkViABa8txHJqSR7Gbou74BL6RL8FVS5HYsJrR6MzR1UXoNIBhAIAvZV7LIQYcAKMY9lA_CHHgU4jDfdSHmIR-HFHeQ0fWzgAgjiA6RD1COQ1ZRPoonWg1lU2rprou7cKsvCRfykZp643Kl-nXx-eDNkVr6vXNc3u7tK_lQnuPbSWNl-qqssfooJCV1SfbOUDPN9dP6cgf39_epcnYV4QR8AlmmAc41jwqQpeFyVwWTLKAFyqPKI4gVjmwTGquOVMQUhmTXGYhY2GWMUkG6GLjnZv2rdN2IVxk5RLIRredFc5AOQHGsEPP_6CztjONS-cozBzHeOSo4YZSprXW6ELMTVlLsxIBiHW9Yl2v2NXrHs622i6rdb7Df_p0QLwB3stKr_7RieRqkvzKvwHIYIY9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627048786</pqid></control><display><type>article</type><title>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhang, Yuzhuo ; Wang, Yanju ; Yang, Xiaoyu ; Zhao, Lichen ; Su, Rui ; Wu, Jiang ; Luo, Deying ; Li, Shunde ; Chen, Peng ; Yu, Maotao ; Gong, Qihuang ; Zhu, Rui</creator><creatorcontrib>Zhang, Yuzhuo ; Wang, Yanju ; Yang, Xiaoyu ; Zhao, Lichen ; Su, Rui ; Wu, Jiang ; Luo, Deying ; Li, Shunde ; Chen, Peng ; Yu, Maotao ; Gong, Qihuang ; Zhu, Rui</creatorcontrib><description>A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization.
A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202107420</identifier><identifier>PMID: 34845763</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carrier transport ; Commercialization ; Crystal defects ; Crystal structure ; Crystallization ; Energy conversion efficiency ; Mass production ; Materials science ; Maximum power ; mechanochemistry ; Nucleation ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Precursors ; pure‐phase perovskite powder ; Relative humidity ; Solar cells ; stable storage ; Storage stability</subject><ispartof>Advanced materials (Weinheim), 2022-02, Vol.34 (6), p.e2107420-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</citedby><cites>FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</cites><orcidid>0000-0001-7631-3589 ; 0000-0002-8967-6749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34845763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuzhuo</creatorcontrib><creatorcontrib>Wang, Yanju</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Luo, Deying</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Maotao</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><title>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization.
A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved.</description><subject>Carrier transport</subject><subject>Commercialization</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Energy conversion efficiency</subject><subject>Mass production</subject><subject>Materials science</subject><subject>Maximum power</subject><subject>mechanochemistry</subject><subject>Nucleation</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>pure‐phase perovskite powder</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>stable storage</subject><subject>Storage stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqWwZYkisWGTMrGd2FlG4VGkViABa8txHJqSR7Gbou74BL6RL8FVS5HYsJrR6MzR1UXoNIBhAIAvZV7LIQYcAKMY9lA_CHHgU4jDfdSHmIR-HFHeQ0fWzgAgjiA6RD1COQ1ZRPoonWg1lU2rprou7cKsvCRfykZp643Kl-nXx-eDNkVr6vXNc3u7tK_lQnuPbSWNl-qqssfooJCV1SfbOUDPN9dP6cgf39_epcnYV4QR8AlmmAc41jwqQpeFyVwWTLKAFyqPKI4gVjmwTGquOVMQUhmTXGYhY2GWMUkG6GLjnZv2rdN2IVxk5RLIRredFc5AOQHGsEPP_6CztjONS-cozBzHeOSo4YZSprXW6ELMTVlLsxIBiHW9Yl2v2NXrHs622i6rdb7Df_p0QLwB3stKr_7RieRqkvzKvwHIYIY9</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhang, Yuzhuo</creator><creator>Wang, Yanju</creator><creator>Yang, Xiaoyu</creator><creator>Zhao, Lichen</creator><creator>Su, Rui</creator><creator>Wu, Jiang</creator><creator>Luo, Deying</creator><creator>Li, Shunde</creator><creator>Chen, Peng</creator><creator>Yu, Maotao</creator><creator>Gong, Qihuang</creator><creator>Zhu, Rui</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-8967-6749</orcidid></search><sort><creationdate>20220201</creationdate><title>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</title><author>Zhang, Yuzhuo ; Wang, Yanju ; Yang, Xiaoyu ; Zhao, Lichen ; Su, Rui ; Wu, Jiang ; Luo, Deying ; Li, Shunde ; Chen, Peng ; Yu, Maotao ; Gong, Qihuang ; Zhu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carrier transport</topic><topic>Commercialization</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Energy conversion efficiency</topic><topic>Mass production</topic><topic>Materials science</topic><topic>Maximum power</topic><topic>mechanochemistry</topic><topic>Nucleation</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>pure‐phase perovskite powder</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>stable storage</topic><topic>Storage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuzhuo</creatorcontrib><creatorcontrib>Wang, Yanju</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Lichen</creatorcontrib><creatorcontrib>Su, Rui</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><creatorcontrib>Luo, Deying</creatorcontrib><creatorcontrib>Li, Shunde</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Maotao</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuzhuo</au><au>Wang, Yanju</au><au>Yang, Xiaoyu</au><au>Zhao, Lichen</au><au>Su, Rui</au><au>Wu, Jiang</au><au>Luo, Deying</au><au>Li, Shunde</au><au>Chen, Peng</au><au>Yu, Maotao</au><au>Gong, Qihuang</au><au>Zhu, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemistry Advances High‐Performance Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>e2107420</spage><epage>n/a</epage><pages>e2107420-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco‐friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green‐solvent‐assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ‐phase formamidinium lead iodide (δ‐FAPbI3) powder, which serves as a high‐purity precursor for perovskite film deposition with low defects. The presynthesized δ‐FAPbI3 precursor possesses high concentration of micrometer‐sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using “mixture of PbI2 and FAI” as precursors. As a result, high‐performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ‐FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization.
A mechanochemical route to prepare stoichiometric‐pure and air‐stable δ‐FAPbI3 powders is developed, which can be stored for more than 10 months in ambient environment. Redissolving the δ‐FAPbI3 powders can generate a high concentration of large‐sized polyiodide colloids, which can serve as nuclei to promote heterogeneous nucleation for perovskite films. As a result, a competitive solar cell efficiency of 24.22% is achieved.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34845763</pmid><doi>10.1002/adma.202107420</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7631-3589</orcidid><orcidid>https://orcid.org/0000-0002-8967-6749</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-02, Vol.34 (6), p.e2107420-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2604830772 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carrier transport Commercialization Crystal defects Crystal structure Crystallization Energy conversion efficiency Mass production Materials science Maximum power mechanochemistry Nucleation perovskite solar cells Perovskites Photovoltaic cells Precursors pure‐phase perovskite powder Relative humidity Solar cells stable storage Storage stability |
title | Mechanochemistry Advances High‐Performance Perovskite Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemistry%20Advances%20High%E2%80%90Performance%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Yuzhuo&rft.date=2022-02-01&rft.volume=34&rft.issue=6&rft.spage=e2107420&rft.epage=n/a&rft.pages=e2107420-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202107420&rft_dat=%3Cproquest_cross%3E2627048786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3730-32728129e86f50007adaf7a718fcd642609cd07bae8e87c054a93dab5775bb7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2627048786&rft_id=info:pmid/34845763&rfr_iscdi=true |