Loading…

In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2

Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to d...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2022-03, Vol.21 (3), p.345-351
Main Authors: Zhang, Xin, Lea, Alan S., Chaka, Anne M., Loring, John S., Mergelsberg, Sebastian T., Nakouzi, Elias, Qafoku, Odeta, De Yoreo, James J., Schaef, Herbert T., Rosso, Kevin M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-6caf8bb56fc163d56b5daf077f8a61c216f28f8a2f6a07d70cbf0d80f424dbc63
cites cdi_FETCH-LOGICAL-c324t-6caf8bb56fc163d56b5daf077f8a61c216f28f8a2f6a07d70cbf0d80f424dbc63
container_end_page 351
container_issue 3
container_start_page 345
container_title Nature materials
container_volume 21
creator Zhang, Xin
Lea, Alan S.
Chaka, Anne M.
Loring, John S.
Mergelsberg, Sebastian T.
Nakouzi, Elias
Qafoku, Odeta
De Yoreo, James J.
Schaef, Herbert T.
Rosso, Kevin M.
description Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO 2 ) at 90 bar and 50 °C. On introduction of water-saturated scCO 2 , in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO 3 ·3H 2 O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric–mass spectrometry indicate that the stoichiometry of AMC is MgCO 3 · x H 2 O ( x  = 0.5–1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems. Non-classical crystallization may proceed through formation of intermediate phases, but it is not known whether these are linked to the final crystallization. Here, using an atomic force microscope at 90 bar, brucite carbonation is directly observed, with an amorphous intermediate acting as the seed for crystalline nesquehonite.
doi_str_mv 10.1038/s41563-021-01154-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604831030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604831030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-6caf8bb56fc163d56b5daf077f8a61c216f28f8a2f6a07d70cbf0d80f424dbc63</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5g8sgT8TlZU8aiE1AUWFstx7OIqsYMfA_8el3Rmumf4zpXOB8AtRvcY0e4hMcwFbRDBDcKYs4afgRVmrWiYEOj8lDEm5BJcpXRAleRcrMDn1sPkcoFuUnvn9zBYqKYQ569QEnQ-mziZwalsEhxKPBJ9LNplA7WKffAqu-ArCFOZTdTRZafVCDc7cg0urBqTuTndNfh4fnrfvDZvu5ft5vGt0ZSw3AitbNf3XFiNBR246PmgLGpb2ymBNcHCkq5mYoVC7dAi3Vs0dMgywoZeC7oGd8vfOYbvYlKWk0vajKPypo6QRCDW0aoJVZQsqI4hpWisnGMdHn8kRvIoUi4iZdUj_0RKXkt0KaX5uN9EeQgl-jrpv9Yv9yF3xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604831030</pqid></control><display><type>article</type><title>In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Zhang, Xin ; Lea, Alan S. ; Chaka, Anne M. ; Loring, John S. ; Mergelsberg, Sebastian T. ; Nakouzi, Elias ; Qafoku, Odeta ; De Yoreo, James J. ; Schaef, Herbert T. ; Rosso, Kevin M.</creator><creatorcontrib>Zhang, Xin ; Lea, Alan S. ; Chaka, Anne M. ; Loring, John S. ; Mergelsberg, Sebastian T. ; Nakouzi, Elias ; Qafoku, Odeta ; De Yoreo, James J. ; Schaef, Herbert T. ; Rosso, Kevin M.</creatorcontrib><description>Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO 2 ) at 90 bar and 50 °C. On introduction of water-saturated scCO 2 , in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO 3 ·3H 2 O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric–mass spectrometry indicate that the stoichiometry of AMC is MgCO 3 · x H 2 O ( x  = 0.5–1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems. Non-classical crystallization may proceed through formation of intermediate phases, but it is not known whether these are linked to the final crystallization. Here, using an atomic force microscope at 90 bar, brucite carbonation is directly observed, with an amorphous intermediate acting as the seed for crystalline nesquehonite.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-01154-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/146 ; 639/301/357/551 ; 639/301/930/2735 ; 639/638/542/968 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Materials Science ; Nanotechnology ; Optical and Electronic Materials</subject><ispartof>Nature materials, 2022-03, Vol.21 (3), p.345-351</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-6caf8bb56fc163d56b5daf077f8a61c216f28f8a2f6a07d70cbf0d80f424dbc63</citedby><cites>FETCH-LOGICAL-c324t-6caf8bb56fc163d56b5daf077f8a61c216f28f8a2f6a07d70cbf0d80f424dbc63</cites><orcidid>0000-0002-8474-7720 ; 0000-0002-4546-3979 ; 0000-0003-2000-858X ; 0000-0002-4232-1553 ; 0000-0002-9541-733X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lea, Alan S.</creatorcontrib><creatorcontrib>Chaka, Anne M.</creatorcontrib><creatorcontrib>Loring, John S.</creatorcontrib><creatorcontrib>Mergelsberg, Sebastian T.</creatorcontrib><creatorcontrib>Nakouzi, Elias</creatorcontrib><creatorcontrib>Qafoku, Odeta</creatorcontrib><creatorcontrib>De Yoreo, James J.</creatorcontrib><creatorcontrib>Schaef, Herbert T.</creatorcontrib><creatorcontrib>Rosso, Kevin M.</creatorcontrib><title>In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><description>Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO 2 ) at 90 bar and 50 °C. On introduction of water-saturated scCO 2 , in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO 3 ·3H 2 O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric–mass spectrometry indicate that the stoichiometry of AMC is MgCO 3 · x H 2 O ( x  = 0.5–1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems. Non-classical crystallization may proceed through formation of intermediate phases, but it is not known whether these are linked to the final crystallization. Here, using an atomic force microscope at 90 bar, brucite carbonation is directly observed, with an amorphous intermediate acting as the seed for crystalline nesquehonite.</description><subject>119/118</subject><subject>140/146</subject><subject>639/301/357/551</subject><subject>639/301/930/2735</subject><subject>639/638/542/968</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwB5g8sgT8TlZU8aiE1AUWFstx7OIqsYMfA_8el3Rmumf4zpXOB8AtRvcY0e4hMcwFbRDBDcKYs4afgRVmrWiYEOj8lDEm5BJcpXRAleRcrMDn1sPkcoFuUnvn9zBYqKYQ569QEnQ-mziZwalsEhxKPBJ9LNplA7WKffAqu-ArCFOZTdTRZafVCDc7cg0urBqTuTndNfh4fnrfvDZvu5ft5vGt0ZSw3AitbNf3XFiNBR246PmgLGpb2ymBNcHCkq5mYoVC7dAi3Vs0dMgywoZeC7oGd8vfOYbvYlKWk0vajKPypo6QRCDW0aoJVZQsqI4hpWisnGMdHn8kRvIoUi4iZdUj_0RKXkt0KaX5uN9EeQgl-jrpv9Yv9yF3xA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zhang, Xin</creator><creator>Lea, Alan S.</creator><creator>Chaka, Anne M.</creator><creator>Loring, John S.</creator><creator>Mergelsberg, Sebastian T.</creator><creator>Nakouzi, Elias</creator><creator>Qafoku, Odeta</creator><creator>De Yoreo, James J.</creator><creator>Schaef, Herbert T.</creator><creator>Rosso, Kevin M.</creator><general>Nature Publishing Group UK</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8474-7720</orcidid><orcidid>https://orcid.org/0000-0002-4546-3979</orcidid><orcidid>https://orcid.org/0000-0003-2000-858X</orcidid><orcidid>https://orcid.org/0000-0002-4232-1553</orcidid><orcidid>https://orcid.org/0000-0002-9541-733X</orcidid></search><sort><creationdate>20220301</creationdate><title>In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2</title><author>Zhang, Xin ; Lea, Alan S. ; Chaka, Anne M. ; Loring, John S. ; Mergelsberg, Sebastian T. ; Nakouzi, Elias ; Qafoku, Odeta ; De Yoreo, James J. ; Schaef, Herbert T. ; Rosso, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-6caf8bb56fc163d56b5daf077f8a61c216f28f8a2f6a07d70cbf0d80f424dbc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>119/118</topic><topic>140/146</topic><topic>639/301/357/551</topic><topic>639/301/930/2735</topic><topic>639/638/542/968</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Lea, Alan S.</creatorcontrib><creatorcontrib>Chaka, Anne M.</creatorcontrib><creatorcontrib>Loring, John S.</creatorcontrib><creatorcontrib>Mergelsberg, Sebastian T.</creatorcontrib><creatorcontrib>Nakouzi, Elias</creatorcontrib><creatorcontrib>Qafoku, Odeta</creatorcontrib><creatorcontrib>De Yoreo, James J.</creatorcontrib><creatorcontrib>Schaef, Herbert T.</creatorcontrib><creatorcontrib>Rosso, Kevin M.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xin</au><au>Lea, Alan S.</au><au>Chaka, Anne M.</au><au>Loring, John S.</au><au>Mergelsberg, Sebastian T.</au><au>Nakouzi, Elias</au><au>Qafoku, Odeta</au><au>De Yoreo, James J.</au><au>Schaef, Herbert T.</au><au>Rosso, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>345</spage><epage>351</epage><pages>345-351</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO 2 ) at 90 bar and 50 °C. On introduction of water-saturated scCO 2 , in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO 3 ·3H 2 O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric–mass spectrometry indicate that the stoichiometry of AMC is MgCO 3 · x H 2 O ( x  = 0.5–1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems. Non-classical crystallization may proceed through formation of intermediate phases, but it is not known whether these are linked to the final crystallization. Here, using an atomic force microscope at 90 bar, brucite carbonation is directly observed, with an amorphous intermediate acting as the seed for crystalline nesquehonite.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41563-021-01154-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8474-7720</orcidid><orcidid>https://orcid.org/0000-0002-4546-3979</orcidid><orcidid>https://orcid.org/0000-0003-2000-858X</orcidid><orcidid>https://orcid.org/0000-0002-4232-1553</orcidid><orcidid>https://orcid.org/0000-0002-9541-733X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2022-03, Vol.21 (3), p.345-351
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2604831030
source Springer Nature - Connect here FIRST to enable access
subjects 119/118
140/146
639/301/357/551
639/301/930/2735
639/638/542/968
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Materials Science
Nanotechnology
Optical and Electronic Materials
title In situ imaging of amorphous intermediates during brucite carbonation in supercritical CO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20imaging%20of%20amorphous%20intermediates%20during%20brucite%20carbonation%20in%20supercritical%20CO2&rft.jtitle=Nature%20materials&rft.au=Zhang,%20Xin&rft.date=2022-03-01&rft.volume=21&rft.issue=3&rft.spage=345&rft.epage=351&rft.pages=345-351&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-01154-5&rft_dat=%3Cproquest_cross%3E2604831030%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-6caf8bb56fc163d56b5daf077f8a61c216f28f8a2f6a07d70cbf0d80f424dbc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604831030&rft_id=info:pmid/&rfr_iscdi=true