Loading…
Blocking inhibitors in cathodic Leveling. I. Theoretical analysis
A model for predicting leveling during electrodeposition in the presence of an inhibiting additive is presented. Based on a diffusion-adsorption mechanism, the model assumes that the additive is consumed at the cathode by electroreduction. Using the approximation of a flat, stagnant diffusion layer,...
Saved in:
Published in: | Journal of the Electrochemical Society 1996-12, Vol.143 (12), p.3927-3936 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A model for predicting leveling during electrodeposition in the presence of an inhibiting additive is presented. Based on a diffusion-adsorption mechanism, the model assumes that the additive is consumed at the cathode by electroreduction. Using the approximation of a flat, stagnant diffusion layer, leveling during metal electrodeposition into triangular and semicircular grooves is simulated. The variation of the leveling agent concentration along the groove profile is determined by solving a concentration field problem with a boundary element method, and the advancement of the groove profile is simulated with a flexible moving-boundary algorithm. Leveling performance depends on three dimensionless groups characterizing leveling-agent reduction, metal-ion reduction, and the geometrical ratio of the diffusion layer thickness to groove depth. Experiments (done in part II of this study) were done with nickel deposition. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/1.1837318 |