Loading…
The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations
In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We...
Saved in:
Published in: | Computers & mathematics with applications (1987) 1996, Vol.31 (11), p.1-21 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3 |
container_end_page | 21 |
container_issue | 11 |
container_start_page | 1 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 31 |
creator | Huang, Lan Chieh Wu, Ya Dan |
description | In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of
O(
Δt
2) for the velocity and
O(
Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method. |
doi_str_mv | 10.1016/0898-1221(96)00057-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26064930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0898122196000570</els_id><sourcerecordid>26064930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxPXjH3jowRg9VKF0C1xMzMavxOjB9UwoHSLalpXpmvjvhezGoycG5nlfZl5CThi9ZJQ1V1QqWbKqYuequaCUzkVJd8iMScFL0TRyl8z-kH1ygPiRoJpXdEaG5TsUNgyrMMI4lTaM6HFKZbGKgLiOuRsj2MmHMb2Fj205wPQeusKFWEzJwo_ZJEt820PxbL49xPJ1Cp-ABXytTRbhEdlzpkc43p6H5O3udrl4KJ9e7h8XN0-lrRmdSsdNJ-aWKi5FJaRkrTNtK5gQ3VypltUMwBpw4FpV0bpyXLbcUsO6tJMExw_J2cY3Dfy1Bpz04NFC35sRwhp11dCmVpwmsN6ANgbECE6voh9M_NGM6pytzsHpHJxW6ZKz1Vl2uvU3aE3vohmtxz8tZ5USTCbseoNB2jUHotF6GC10Piequ-D__-cXZgyQdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26064930</pqid></control><display><type>article</type><title>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</title><source>ScienceDirect Freedom Collection</source><creator>Huang, Lan Chieh ; Wu, Ya Dan</creator><creatorcontrib>Huang, Lan Chieh ; Wu, Ya Dan</creatorcontrib><description>In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of
O(
Δt
2) for the velocity and
O(
Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/0898-1221(96)00057-0</identifier><identifier>CODEN: CMAPDK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Component-consistency ; Deviation ; Differential-algebraic equations ; Exact sciences and technology ; Incompressible Navier-Stokes equations ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Numerical methods in mathematical programming ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Numerical methods in probability and statistics ; Numerical simulation ; Ordinary differential equations ; Pressure correction projection ; Sciences and techniques of general use</subject><ispartof>Computers & mathematics with applications (1987), 1996, Vol.31 (11), p.1-21</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</citedby><cites>FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3129718$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lan Chieh</creatorcontrib><creatorcontrib>Wu, Ya Dan</creatorcontrib><title>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of
O(
Δt
2) for the velocity and
O(
Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.</description><subject>Component-consistency</subject><subject>Deviation</subject><subject>Differential-algebraic equations</subject><subject>Exact sciences and technology</subject><subject>Incompressible Navier-Stokes equations</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Numerical methods in mathematical programming</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Numerical methods in probability and statistics</subject><subject>Numerical simulation</subject><subject>Ordinary differential equations</subject><subject>Pressure correction projection</subject><subject>Sciences and techniques of general use</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxPXjH3jowRg9VKF0C1xMzMavxOjB9UwoHSLalpXpmvjvhezGoycG5nlfZl5CThi9ZJQ1V1QqWbKqYuequaCUzkVJd8iMScFL0TRyl8z-kH1ygPiRoJpXdEaG5TsUNgyrMMI4lTaM6HFKZbGKgLiOuRsj2MmHMb2Fj205wPQeusKFWEzJwo_ZJEt820PxbL49xPJ1Cp-ABXytTRbhEdlzpkc43p6H5O3udrl4KJ9e7h8XN0-lrRmdSsdNJ-aWKi5FJaRkrTNtK5gQ3VypltUMwBpw4FpV0bpyXLbcUsO6tJMExw_J2cY3Dfy1Bpz04NFC35sRwhp11dCmVpwmsN6ANgbECE6voh9M_NGM6pytzsHpHJxW6ZKz1Vl2uvU3aE3vohmtxz8tZ5USTCbseoNB2jUHotF6GC10Piequ-D__-cXZgyQdQ</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Huang, Lan Chieh</creator><creator>Wu, Ya Dan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</title><author>Huang, Lan Chieh ; Wu, Ya Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Component-consistency</topic><topic>Deviation</topic><topic>Differential-algebraic equations</topic><topic>Exact sciences and technology</topic><topic>Incompressible Navier-Stokes equations</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Numerical methods in mathematical programming</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Numerical methods in probability and statistics</topic><topic>Numerical simulation</topic><topic>Ordinary differential equations</topic><topic>Pressure correction projection</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan Chieh</creatorcontrib><creatorcontrib>Wu, Ya Dan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan Chieh</au><au>Wu, Ya Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>1996</date><risdate>1996</risdate><volume>31</volume><issue>11</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><coden>CMAPDK</coden><abstract>In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of
O(
Δt
2) for the velocity and
O(
Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0898-1221(96)00057-0</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 1996, Vol.31 (11), p.1-21 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_26064930 |
source | ScienceDirect Freedom Collection |
subjects | Component-consistency Deviation Differential-algebraic equations Exact sciences and technology Incompressible Navier-Stokes equations Mathematics Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Numerical approximation Numerical methods in mathematical programming Numerical methods in mathematical programming, optimization and calculus of variations Numerical methods in optimization and calculus of variations Numerical methods in probability and statistics Numerical simulation Ordinary differential equations Pressure correction projection Sciences and techniques of general use |
title | The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20component-consistent%20pressure%20correction%20projection%20method%20for%20the%20incompressible%20Navier-Stokes%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Huang,%20Lan%20Chieh&rft.date=1996&rft.volume=31&rft.issue=11&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0898-1221&rft.eissn=1873-7668&rft.coden=CMAPDK&rft_id=info:doi/10.1016/0898-1221(96)00057-0&rft_dat=%3Cproquest_cross%3E26064930%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26064930&rft_id=info:pmid/&rfr_iscdi=true |