Loading…

The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations

In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 1996, Vol.31 (11), p.1-21
Main Authors: Huang, Lan Chieh, Wu, Ya Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3
cites cdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3
container_end_page 21
container_issue 11
container_start_page 1
container_title Computers & mathematics with applications (1987)
container_volume 31
creator Huang, Lan Chieh
Wu, Ya Dan
description In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of O( Δt 2) for the velocity and O( Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.
doi_str_mv 10.1016/0898-1221(96)00057-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26064930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0898122196000570</els_id><sourcerecordid>26064930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxPXjH3jowRg9VKF0C1xMzMavxOjB9UwoHSLalpXpmvjvhezGoycG5nlfZl5CThi9ZJQ1V1QqWbKqYuequaCUzkVJd8iMScFL0TRyl8z-kH1ygPiRoJpXdEaG5TsUNgyrMMI4lTaM6HFKZbGKgLiOuRsj2MmHMb2Fj205wPQeusKFWEzJwo_ZJEt820PxbL49xPJ1Cp-ABXytTRbhEdlzpkc43p6H5O3udrl4KJ9e7h8XN0-lrRmdSsdNJ-aWKi5FJaRkrTNtK5gQ3VypltUMwBpw4FpV0bpyXLbcUsO6tJMExw_J2cY3Dfy1Bpz04NFC35sRwhp11dCmVpwmsN6ANgbECE6voh9M_NGM6pytzsHpHJxW6ZKz1Vl2uvU3aE3vohmtxz8tZ5USTCbseoNB2jUHotF6GC10Piequ-D__-cXZgyQdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26064930</pqid></control><display><type>article</type><title>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</title><source>ScienceDirect Freedom Collection</source><creator>Huang, Lan Chieh ; Wu, Ya Dan</creator><creatorcontrib>Huang, Lan Chieh ; Wu, Ya Dan</creatorcontrib><description>In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of O( Δt 2) for the velocity and O( Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/0898-1221(96)00057-0</identifier><identifier>CODEN: CMAPDK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Component-consistency ; Deviation ; Differential-algebraic equations ; Exact sciences and technology ; Incompressible Navier-Stokes equations ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Numerical methods in mathematical programming ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Numerical methods in probability and statistics ; Numerical simulation ; Ordinary differential equations ; Pressure correction projection ; Sciences and techniques of general use</subject><ispartof>Computers &amp; mathematics with applications (1987), 1996, Vol.31 (11), p.1-21</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</citedby><cites>FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3129718$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lan Chieh</creatorcontrib><creatorcontrib>Wu, Ya Dan</creatorcontrib><title>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of O( Δt 2) for the velocity and O( Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.</description><subject>Component-consistency</subject><subject>Deviation</subject><subject>Differential-algebraic equations</subject><subject>Exact sciences and technology</subject><subject>Incompressible Navier-Stokes equations</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Numerical methods in mathematical programming</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Numerical methods in probability and statistics</subject><subject>Numerical simulation</subject><subject>Ordinary differential equations</subject><subject>Pressure correction projection</subject><subject>Sciences and techniques of general use</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxPXjH3jowRg9VKF0C1xMzMavxOjB9UwoHSLalpXpmvjvhezGoycG5nlfZl5CThi9ZJQ1V1QqWbKqYuequaCUzkVJd8iMScFL0TRyl8z-kH1ygPiRoJpXdEaG5TsUNgyrMMI4lTaM6HFKZbGKgLiOuRsj2MmHMb2Fj205wPQeusKFWEzJwo_ZJEt820PxbL49xPJ1Cp-ABXytTRbhEdlzpkc43p6H5O3udrl4KJ9e7h8XN0-lrRmdSsdNJ-aWKi5FJaRkrTNtK5gQ3VypltUMwBpw4FpV0bpyXLbcUsO6tJMExw_J2cY3Dfy1Bpz04NFC35sRwhp11dCmVpwmsN6ANgbECE6voh9M_NGM6pytzsHpHJxW6ZKz1Vl2uvU3aE3vohmtxz8tZ5USTCbseoNB2jUHotF6GC10Piequ-D__-cXZgyQdQ</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Huang, Lan Chieh</creator><creator>Wu, Ya Dan</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</title><author>Huang, Lan Chieh ; Wu, Ya Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Component-consistency</topic><topic>Deviation</topic><topic>Differential-algebraic equations</topic><topic>Exact sciences and technology</topic><topic>Incompressible Navier-Stokes equations</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Numerical methods in mathematical programming</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Numerical methods in probability and statistics</topic><topic>Numerical simulation</topic><topic>Ordinary differential equations</topic><topic>Pressure correction projection</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan Chieh</creatorcontrib><creatorcontrib>Wu, Ya Dan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan Chieh</au><au>Wu, Ya Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>1996</date><risdate>1996</risdate><volume>31</volume><issue>11</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><coden>CMAPDK</coden><abstract>In this paper, we propose the component-consistent pressure correction projection method for the numerical solution of the incompressible Navier-Stokes equations. This projection preserves a discrete form of the component-consistent condition between components of the solution at every time step. We also propose, in particular, the CNMT2 + CCPC method and the RKMT + CCPC method, both involving one pressure Poisson solution per time step. We show that they are both of O( Δt 2) for the velocity and O( Δt) for the pressure on fixed meshes and finite time intervals. Numerical tests on flow simulation support our claim that the component-consistent pressure correction projection method solves the deviation problem encountered sometimes by the original pressure correction projection method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0898-1221(96)00057-0</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 1996, Vol.31 (11), p.1-21
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_26064930
source ScienceDirect Freedom Collection
subjects Component-consistency
Deviation
Differential-algebraic equations
Exact sciences and technology
Incompressible Navier-Stokes equations
Mathematics
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Numerical methods in mathematical programming
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Numerical methods in probability and statistics
Numerical simulation
Ordinary differential equations
Pressure correction projection
Sciences and techniques of general use
title The component-consistent pressure correction projection method for the incompressible Navier-Stokes equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20component-consistent%20pressure%20correction%20projection%20method%20for%20the%20incompressible%20Navier-Stokes%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Huang,%20Lan%20Chieh&rft.date=1996&rft.volume=31&rft.issue=11&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0898-1221&rft.eissn=1873-7668&rft.coden=CMAPDK&rft_id=info:doi/10.1016/0898-1221(96)00057-0&rft_dat=%3Cproquest_cross%3E26064930%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-f3ad75c0938727881bfabb7177d599b141eecaefefb92042f38b3c0a1d3208ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26064930&rft_id=info:pmid/&rfr_iscdi=true