Loading…
Long-term, synergistic and high-efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by “one-pot” electrospinning process
[Display omitted] Enhancing long-term antibacterial activity of membrane materials is an effective strategy to reduce biological contamination. Herein, we developed a long-term, synergistic antibacterial polyacrylonitrile (PAN) nanofiber membrane by a “one-pot” electrospinning process. In the reacti...
Saved in:
Published in: | Journal of colloid and interface science 2022-03, Vol.609, p.718-733 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Enhancing long-term antibacterial activity of membrane materials is an effective strategy to reduce biological contamination. Herein, we developed a long-term, synergistic antibacterial polyacrylonitrile (PAN) nanofiber membrane by a “one-pot” electrospinning process. In the reaction solution of PAN and N, N-dimethylformamide (DMF), silver-silicon dioxide nanoparticles (Ag@SiO2 NPs) are in-situ synthesized and stabilized using silane coupling agent; and [2-(methacryloyloxy)-ethyl] trimethylammonium chloride (MT) monomers are then in-situ cross-linked to obtain a polyquaternary ammonium salt (PMT). Subsequently, the casting solution is directly used to fabricate Ag@SiO2/PMT-PAN nanofibrous membrane (NFM) via electrospinning. The antibacterial activity, reusability, synergy effect and biological safety of the Ag@SiO2/PMT-PAN NFM are systematically investigated, and the synergistic antibacterial mechanism is also explored. Even at very low (0.3 wt%) content of silver, the Ag@SiO2/PMT-PAN NFM exhibits excellent antibacterial activity against E. coli (99%) and S. aureus (99%). Also, the antibacterial ability of the NFM remains the same level after three cycles of antibacterial processes with the efficient synergy effects of Ag@SiO2 and PMT components. When the Ag@SiO2/PMT-PAN contacts with bacteria, the PMT attracts and kills the bacteria through electrostatic action. The bacteria with damaged cell membranes are deposited on the nanofibrous membrane, which could greatly promote the release of Ag+ and further enhance the antibacterial activity. Moreover, L929 fibroblasts are co-cultured with the extract of 4 mg/mL Ag@SiO2/PMT-PAN for 5 days, which exhibits a low cytotoxicity with a cell proliferation ratio of 95%. This work opens new pathways for developing long-term effective and synergistic antibacterial nanofibrous membrane materials to prevent infections associated with biomedical equipment. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2021.11.075 |