Loading…

Beam length and dynamic stiffness

The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 1996-01, Vol.129 (3), p.311-318
Main Authors: Chen, Yung-Hsiang, Sheu, Jau-Tsann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793
cites cdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793
container_end_page 318
container_issue 3
container_start_page 311
container_title Computer methods in applied mechanics and engineering
container_volume 129
creator Chen, Yung-Hsiang
Sheu, Jau-Tsann
description The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion.
doi_str_mv 10.1016/0045-7825(95)00912-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26089503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0045782595009124</els_id><sourcerecordid>26057314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</originalsourceid><addsrcrecordid>eNqNkMtKA0EQRRtRMEb_wMUIIroY7fdjI2jwBQE3um46PdXaMo_YPRHy986Y4FKsTVFw7i04CB0TfEkwkVcYc1EqTcW5ERcYG0JLvoMmRCtTUsL0Lpr8IvvoIOcPPIwmdIJObsE1RQ3tW_9euLYqqnXrmuiL3McQWsj5EO0FV2c42u4per2_e5k9lvPnh6fZzbz0zIi-pFQEL4mGBZUUuNLOBCKkMuCZ5lQuvBSacAZeBqNoNZyMYq6oURovlGFTdLbpXabucwW5t03MHuratdCtsqUSayMw-w8oFBteTRHfgD51OScIdpli49LaEmxHcXa0Ykcr1gj7I86OsdNtv8ve1SG51sf8m2WYcq1H7HqDwSDlK0Ky2UdoPVQxge9t1cW__3wDh2t9yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26057314</pqid></control><display><type>article</type><title>Beam length and dynamic stiffness</title><source>Elsevier</source><creator>Chen, Yung-Hsiang ; Sheu, Jau-Tsann</creator><creatorcontrib>Chen, Yung-Hsiang ; Sheu, Jau-Tsann</creatorcontrib><description>The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/0045-7825(95)00912-4</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Computer methods in applied mechanics and engineering, 1996-01, Vol.129 (3), p.311-318</ispartof><rights>1996 Elsevier Science S.A. All rights reserved</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</citedby><cites>FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3024884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yung-Hsiang</creatorcontrib><creatorcontrib>Sheu, Jau-Tsann</creatorcontrib><title>Beam length and dynamic stiffness</title><title>Computer methods in applied mechanics and engineering</title><description>The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKA0EQRRtRMEb_wMUIIroY7fdjI2jwBQE3um46PdXaMo_YPRHy986Y4FKsTVFw7i04CB0TfEkwkVcYc1EqTcW5ERcYG0JLvoMmRCtTUsL0Lpr8IvvoIOcPPIwmdIJObsE1RQ3tW_9euLYqqnXrmuiL3McQWsj5EO0FV2c42u4per2_e5k9lvPnh6fZzbz0zIi-pFQEL4mGBZUUuNLOBCKkMuCZ5lQuvBSacAZeBqNoNZyMYq6oURovlGFTdLbpXabucwW5t03MHuratdCtsqUSayMw-w8oFBteTRHfgD51OScIdpli49LaEmxHcXa0Ykcr1gj7I86OsdNtv8ve1SG51sf8m2WYcq1H7HqDwSDlK0Ky2UdoPVQxge9t1cW__3wDh2t9yA</recordid><startdate>19960115</startdate><enddate>19960115</enddate><creator>Chen, Yung-Hsiang</creator><creator>Sheu, Jau-Tsann</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960115</creationdate><title>Beam length and dynamic stiffness</title><author>Chen, Yung-Hsiang ; Sheu, Jau-Tsann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yung-Hsiang</creatorcontrib><creatorcontrib>Sheu, Jau-Tsann</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yung-Hsiang</au><au>Sheu, Jau-Tsann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beam length and dynamic stiffness</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1996-01-15</date><risdate>1996</risdate><volume>129</volume><issue>3</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0045-7825(95)00912-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 1996-01, Vol.129 (3), p.311-318
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_26089503
source Elsevier
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Vibrations and mechanical waves
title Beam length and dynamic stiffness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beam%20length%20and%20dynamic%20stiffness&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Chen,%20Yung-Hsiang&rft.date=1996-01-15&rft.volume=129&rft.issue=3&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/0045-7825(95)00912-4&rft_dat=%3Cproquest_cross%3E26057314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26057314&rft_id=info:pmid/&rfr_iscdi=true