Loading…
Beam length and dynamic stiffness
The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 1996-01, Vol.129 (3), p.311-318 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793 |
container_end_page | 318 |
container_issue | 3 |
container_start_page | 311 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 129 |
creator | Chen, Yung-Hsiang Sheu, Jau-Tsann |
description | The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion. |
doi_str_mv | 10.1016/0045-7825(95)00912-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26089503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0045782595009124</els_id><sourcerecordid>26057314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</originalsourceid><addsrcrecordid>eNqNkMtKA0EQRRtRMEb_wMUIIroY7fdjI2jwBQE3um46PdXaMo_YPRHy986Y4FKsTVFw7i04CB0TfEkwkVcYc1EqTcW5ERcYG0JLvoMmRCtTUsL0Lpr8IvvoIOcPPIwmdIJObsE1RQ3tW_9euLYqqnXrmuiL3McQWsj5EO0FV2c42u4per2_e5k9lvPnh6fZzbz0zIi-pFQEL4mGBZUUuNLOBCKkMuCZ5lQuvBSacAZeBqNoNZyMYq6oURovlGFTdLbpXabucwW5t03MHuratdCtsqUSayMw-w8oFBteTRHfgD51OScIdpli49LaEmxHcXa0Ykcr1gj7I86OsdNtv8ve1SG51sf8m2WYcq1H7HqDwSDlK0Ky2UdoPVQxge9t1cW__3wDh2t9yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26057314</pqid></control><display><type>article</type><title>Beam length and dynamic stiffness</title><source>Elsevier</source><creator>Chen, Yung-Hsiang ; Sheu, Jau-Tsann</creator><creatorcontrib>Chen, Yung-Hsiang ; Sheu, Jau-Tsann</creatorcontrib><description>The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/0045-7825(95)00912-4</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vibrations and mechanical waves</subject><ispartof>Computer methods in applied mechanics and engineering, 1996-01, Vol.129 (3), p.311-318</ispartof><rights>1996 Elsevier Science S.A. All rights reserved</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</citedby><cites>FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3024884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yung-Hsiang</creatorcontrib><creatorcontrib>Sheu, Jau-Tsann</creatorcontrib><title>Beam length and dynamic stiffness</title><title>Computer methods in applied mechanics and engineering</title><description>The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vibrations and mechanical waves</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKA0EQRRtRMEb_wMUIIroY7fdjI2jwBQE3um46PdXaMo_YPRHy986Y4FKsTVFw7i04CB0TfEkwkVcYc1EqTcW5ERcYG0JLvoMmRCtTUsL0Lpr8IvvoIOcPPIwmdIJObsE1RQ3tW_9euLYqqnXrmuiL3McQWsj5EO0FV2c42u4per2_e5k9lvPnh6fZzbz0zIi-pFQEL4mGBZUUuNLOBCKkMuCZ5lQuvBSacAZeBqNoNZyMYq6oURovlGFTdLbpXabucwW5t03MHuratdCtsqUSayMw-w8oFBteTRHfgD51OScIdpli49LaEmxHcXa0Ykcr1gj7I86OsdNtv8ve1SG51sf8m2WYcq1H7HqDwSDlK0Ky2UdoPVQxge9t1cW__3wDh2t9yA</recordid><startdate>19960115</startdate><enddate>19960115</enddate><creator>Chen, Yung-Hsiang</creator><creator>Sheu, Jau-Tsann</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960115</creationdate><title>Beam length and dynamic stiffness</title><author>Chen, Yung-Hsiang ; Sheu, Jau-Tsann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vibrations and mechanical waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yung-Hsiang</creatorcontrib><creatorcontrib>Sheu, Jau-Tsann</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yung-Hsiang</au><au>Sheu, Jau-Tsann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beam length and dynamic stiffness</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>1996-01-15</date><risdate>1996</risdate><volume>129</volume><issue>3</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The dynamic stiffness matrix is probably the simplest and the most convenient way to deal with the dynamic behavior of a distributed-parameter beam or beam system described in the continuous-coordinate system. The numerical computation of the stiffness coefficients and the determinant of the dynamic stiffness matrix has difficulty at some frequencies. This computational difficulty could be avoided if each beam component of a beam system is divided into the appropriate number of beam elements. Some simple beam examples are included in this paper for demonstration and discussion.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0045-7825(95)00912-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 1996-01, Vol.129 (3), p.311-318 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_26089503 |
source | Elsevier |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vibrations and mechanical waves |
title | Beam length and dynamic stiffness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beam%20length%20and%20dynamic%20stiffness&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Chen,%20Yung-Hsiang&rft.date=1996-01-15&rft.volume=129&rft.issue=3&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/0045-7825(95)00912-4&rft_dat=%3Cproquest_cross%3E26057314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-225fc618eb262e478a9f15679ec38426bc658143ec6f972dc653204729780b793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26057314&rft_id=info:pmid/&rfr_iscdi=true |