Loading…
A combined approach to the phylogeny of Cephalopoda (Mollusca)
Cephalopoda represents a highly diverse group of molluscs, ranging in habitat from coastal regions to deep benthic waters. While cephalopods remain at the forefront of modern biology, in providing insight into fields such as neurobiology and population genetics, little is known about the relationshi...
Saved in:
Published in: | Cladistics 2004-10, Vol.20 (5), p.454-486 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cephalopoda represents a highly diverse group of molluscs, ranging in habitat from coastal regions to deep benthic waters. While cephalopods remain at the forefront of modern biology, in providing insight into fields such as neurobiology and population genetics, little is known about the relationships within the group. This study provides a comprehensive phylogenetic analysis of Cephalopoda (Mollusca) using a combination of molecular and morphological data. Four loci (three nuclear 18S rRNA, fragments of 28S rRNA and histone H3 and one mitochondrial cytochrome c oxidase subunit I) were combined with 101 morphological characters to test the relationships of 60 species of cephalopods, with emphasis within Decabrachia (squids and cuttlefishes). Individual and combined data sets were analyzed using the direct optimization method, with parsimony as the optimality criterion. Analyses were repeated for 12 different parameter sets accounting for a range of indel/change and transversion/transition cost ratios. Most analyses support the monophyly of Cephalopoda, Nautiloidea, Coleoidea and Decabrachia, however, the monophyly of Octobrachia was refuted due to the lack of support for a Cirroctopoda + Octopoda group. When analyzing all molecular evidence in combination and for total evidence analyses, Vampyromorpha formed the sister group to Decabrachia under the majority of parameters, while morphological data and some individual data sets supported a sister relationship between Vampyromorpha and Octobrachia. Within Decabrachia, a relationship between the sepioids Idiosepiida, Sepiida, Sepiolida and the teuthid Loliginidae was supported. Spirulida fell within the teuthid group in most analyses, further rendering Teuthida paraphyletic. Relationships within Decabrachia and specifically Oegopsida were found to be highly parameter‐dependent. © The Willi Hennig Society 2004. |
---|---|
ISSN: | 0748-3007 1096-0031 |
DOI: | 10.1111/j.1096-0031.2004.00032.x |